基于多路径路由的全局感知网络流量分配优化算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。

1.程序功能描述

1.png

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序

bar(alpha);
text(0.5,0.8,'用户1,8节点');
text(1,0.9,'用户2,8节点');
text(1.5,0.8,'用户1,11节点');
text(2,0.9,'用户2,11节点');
axis([0,3,0,1.2])

figure;
bar(beta);
text(0.6,0.3,'用户1,路径8-11');
text(1.6,0.9,'用户2,路径8-11');
axis([0,3,0,1.2]);



figure;
plot(X1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(X2,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
plot(X3,'-b^',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.2,0.9,0.5]);
hold on
plot(X4,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
legend('用户1,8节点','用户2,8节点','用户1,11节点','用户2,11节点');

figure;
plot(Y1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(Y2,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
legend('用户1,路径8-11','用户2,路径8-11');




figure;
plot(X,Y,'r*');
hold on
for j1 = 1:Nodes
    text(X(j1),Y(j1)+10,[num2str(j1)]);
end
for i = 1:User
    paths = PATHS{i};
    for j = 1:length(paths)-1
        if i == 1
           h1=plot([X(paths(j)),X(paths(j+1))],[Y(paths(j)),Y(paths(j+1))]+1,'r'); hold on
        end
        if i == 2
           h2=plot([X(paths(j)),X(paths(j+1))],[Y(paths(j)),Y(paths(j+1))]-1,'k--','linewidth',2); hold on
        end        
    end
end
hold on
for j = 1:length(Spath)-1
    h3=plot([X(Spath(j)),X(Spath(j+1))],[Y(Spath(j)),Y(Spath(j+1))],'g','linewidth',2); hold on
end
legend([h1,h2,h3],'用户1路径','用户2路径','共享路径');


figure;
plot(Error3,'b-o')
grid on
xlabel('优化迭代次数');
ylabel('min U');
hold on
plot(1:MAXGEN,10.1928*ones(1,50),'r','linewidth',2);
12_030m

4.本算法原理
随着网络规模的扩大和流量的增长,传统的单路径路由策略已经无法满足现代网络的需求。为了更有效地利用网络资源和提高网络性能,多路径路由策略逐渐被广泛应用于实际网络中。本文提出了一种基于多路径路由的全局感知网络流量分配优化算法,旨在实现网络流量的均衡分配,降低网络拥塞,提高网络吞吐量。

4.1网络模型

 考虑一个由N个节点和M条边组成的网络,表示为G(N, M)。每个节点表示一个网络设备(如路由器或交换机),每条边表示网络连接。网络中存在K种类型的流量,每种流量具有不同的带宽需求和优先级。

2061118b288d01c74ddaf28b23ab0535_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 全局感知网络流量分配优化算法

   假设每种类型的流量在网络中均匀分布,表示为D = [d1, d2, ..., dK],其中dk表示第k种流量的需求。网络的总带宽表示为C = [c1, c2, ..., cM],其中cm表示第m条边的带宽容量。

5b7e52b4045879540a2b9800f9527820_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   本算法采用迭代的方式进行流量分配。在每次迭代中,首先根据当前的网络状态计算每条边的带宽利用率,然后根据带宽利用率和流量的优先级需求进行流量调整。迭代过程直到达到收敛条件或达到最大迭代次数为止。

对于每条边m,其带宽利用率um计算如下:

   um = Σ(xm,k * dk) / cm (1)

   其中,xm,k表示第k种流量在第m条边上的分配比例。通过该公式,我们可以得到每条边的带宽利用率,进而评估网络的拥塞程度。根据带宽利用率和流量的优先级需求,我们采用以下策略进行流量调整:

(1)对于优先级较高的流量,如果其所在路径的带宽利用率较高,则尝试将其部分流量转移到其他可用路径上;
(2)对于优先级较低的流量,如果其所在路径的带宽利用率较低,则尝试增加其分配比例,以提高网络吞吐量;
(3)为了保证网络的稳定性,每次流量调整的比例不宜过大,需要根据实际情况进行设置。

收敛条件与迭代终止
为了保证算法的收敛性,我们设置以下收敛条件:当连续若干次迭代中,网络的总带宽利用率变化小于一定阈值时,认为算法已经收敛。同时,为了防止算法陷入局部最优解,我们也设置了最大迭代次数作为算法的终止条件。

相关文章
|
6天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
7天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
19天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
154 80
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。