我是如何把python获取到的数据写入Excel的?

简介: 我是如何把python获取到的数据写入Excel的?

如何将获取的数据写入Excel,这一点我在文章几乎都是采用这种方式来进行操作的

写入Excel的目的是为了后续更加方便的使用pandas对数据进行清洗、筛选、过滤等操作。

为进一步数据研究、可视化打基础。

1. 自定义写入Excel

python写入Excel的方式有很多,常用的支持python操作的库有

xlsxwriterpandas、openpyxl

今天咱们只介绍我常用到的openpyxl

1. 创建workbook

2.创建worsheet

3.数据写入sheet

4.数据写入sheet

5.保存到excel

既然说到数据写入Excel。那我们直接上案例

网页的分析和数据的爬取我们可以参考:

Python实战|腾讯招聘你干什么?python可视化告诉你

如图我们现在已经成功的将数据打印出来了,接下来我们考虑的就是如何将这些数据保存到Excel中。

前面说到我们这里使用的Python库是openpyxl来实现这一操作。

所以第一步

openpyxl的下载

或者自行下载whl文件安装

https://www.lfd.uci.edu/~gohlke/pythonlibs/

导入库

使用import导入openpyxl库,为后续方便调用,

可以使用as关键字来简写库名

import openpyxl as op

1. 创建workbook

ws = op.Workbook()

2.创建worsheet

wb = ws.create_sheet(index=0)

3. 头文件

    wb.cell(row=1, column=1, value='职位名称')
    wb.cell(row=1, column=2, value='国家')
    wb.cell(row=1, column=3, value='城市')
    wb.cell(row=1, column=4, value='职位分类')
    wb.cell(row=1, column=5, value='职位更新时间')
    wb.cell(row=1, column=6, value='职位要求')

3.数据写入sheet

      # 加入count是为了换行写入数据
      count = 2 
      
      # 要写入excel的数据
      post_name = job['RecruitPostName']  # 职位名称
      country_name = job['CountryName']  # 国家
      loc_name = job['LocationName']  # 城市
      category_name = job['CategoryName']  # 职位分类
      last_up_time = job['LastUpdateTime']  # 职位更新时间
      responsibility = job['Responsibility']  # 职位要求
      
      # 打印获取到的数据
      print(post_name, country_name, loc_name, category_name, last_up_time, responsibility)
      
      # 将数据写入到下一行
      wb.cell(row=count, column=1, value=post_name)
      wb.cell(row=count, column=2, value=country_name)
      wb.cell(row=count, column=3, value=loc_name)
      wb.cell(row=count, column=4, value=category_name)
      wb.cell(row=count, column=5, value=last_up_time)
      wb.cell(row=count, column=6, value=responsibility)
      
      # count加1,进入到下一行写入数据
      count += 1

4.保存excel

  # 保存数据
  ws.save('腾讯职位.xlsx')

四步走轻松将你的数据写入到Excel

还有更多的表头、边框、颜色设置等在此不再赘述哈

有需要的可自行百度哈。

2. 函数式写入Excel

import openpyxl as op
 
id = [1, 2, 3]
name = ['张三', '李四', '王五']
age = [21, 20, 122]
address = ['北京', '上海', '广州']
infos = [id, name, age, address]
 
 
def op_toexcel(data): # openpyxl库储存数据到excel
    wb = op.Workbook() # 创建工作簿对象
    ws = wb['Sheet'] # 创建子表
    ws.append(['序号', '姓名', '年龄', '住址']) # 添加表头
    for i in range(len(data[0])):
        d = data[0][i], data[1][i], data[2][i], data[3][i]
        ws.append(d) # 每次写入一行
    wb.save('测试.xlsx')

3. pandas写入Excel

id = [1, 2, 3]
name = ['张三', '李四', '王五']
age = [21, 20, 122]
address = ['北京', '上海', '广州']
infos = [id, name, age, address]
 
# pandas库储存数据到excel
def pd_toexcel(data):
    # 用字典设置DataFrame所需数据
    dfData = {
        '序号': data[0],
        '姓名': data[1],
        '年龄': data[2],
        '住址': data[3]
 
    }
    # 创建DataFrame
    df = pd.DataFrame(dfData)
    # 存表,去除原始索引列(0,1,2...)
    df.to_excel('测试.xlsx', index=False)

如有不足之处,烦请大佬们不吝赐教。及时指正。一起进步!

相关文章
|
29天前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
163 1
|
1月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
21天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
24天前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
75 0
|
6天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
8天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
126 1
|
17天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
2月前
|
JSON 数据挖掘 API
闲鱼商品列表API响应数据python解析
闲鱼商品列表API(Goodfish.item_list)提供标准化数据接口,支持GET请求,返回商品标题、价格、图片、卖家信息等。适用于电商比价、数据分析,支持多语言调用,附Python示例代码,便于开发者快速集成。

推荐镜像

更多