使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)

简介: 本文介绍了使用不同模型和平台体验GraphRAG的过程。首先通过OpenAI的GPT-4O Mini模型对沈从文的《边城》进行了分析,展示了如何安装GraphRAG并配置参数,最终实现了对文本的有效查询。随后,文章探讨了在国内环境下使用SiliconCloud作为替代方案的可能性,以《三国演义》为例,演示了使用SiliconCloud模型进行相同操作的步骤。此外,还讨论了使用本地模型如Ollama和LM Studio的可能性,尽管受限于硬件条件未能实际运行。最后,提出了混合使用在线对话模型API与本地或在线嵌入模型的方法,并列举了一些能够使GraphRAG流程跑通的大模型。

使用OpenAI模型体验GraphRag——以《边城》为例

在使用SiliconCloud之前,先使用OpenAI的模型看看GraphRag的效果。

GraphRAG是一种基于AI的内容理解和搜索能力,利用LLMs,解析数据以创建知识图谱,并对用户提供的私有数据集回答用户问题的方法。

GitHub地址:https://github.com/microsoft/graphrag

官网:https://microsoft.github.io/graphrag

现在正式开始体验GraphRag吧。

温馨提示

GraphRag Token的消费量比较大,刚开始体验可以不按照官方的配置,改用字数少一点的文本以及换成gpt-4o-mini模型。

以沈从文的《边城》为例。

创建一个Python虚拟环境,安装GraphRag:

pip install graphrag

安装好了之后:

mkdir biancheng
mkdir input

就是创建两个文件夹,也可以手动操作,然后将《边城》txt文件放到input文件夹下,如下所示:

image-20240810091951237

开始初始化:

python -m graphrag.index --init --root ./biancheng

完成后,会出现一些文件,如下所示:

image-20240810092251562

在.env文件中输入OpenAI Api Key,如下所示:

image-20240810092403747

在settings.yaml文件中做一些配置,在这里我的配置如下:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${
   
   GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: gpt-4o-mini
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${
   
   GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: text-embedding-3-small
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional



chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

为了节约成本,把模型换成了gpt-4o-mini:

image-20240810092653575

为了后面在Gephi等软件中查看graphml文件,这里改成了true:

image-20240810093039475

这样就配置好了,现在开始索引化:

python -m graphrag.index --root ./biancheng

索引化完成截图:

img

现在可以查看一下生成的节点和边:

image-20240810093551574

image-20240810093633997

现在就可以开始查询了。

先来全局查询:

python -m graphrag.query --root ./biancheng --method global "这篇小说讲了什么主题?"

image-20240810093814596

再来局部查询:

python -m graphrag.query --root ./biancheng --method local "翠翠在白鸡关发生了什么?"

image-20240810093934417

《边城》的字数大约在5万到6万字之间,查看成本:

image-20240810094208222

只花了0.18美元,gpt-4o-mini性价比还是很高的。

使用SiliconCloud尝试GraphRag——以《三国演义》为例

虽然使用OpenAI的模型效果很好,但是在国内使用OpenAI会有一些限制,可能很多人还没有OpenAI Api Key,而且可能暂时也没法弄到,因此可以选择SiliconCloud做替代,SiliconCloud同时提供了兼容OpenAI格式的对话模型与嵌入模型,并有多款先进开源大模型可用,刚注册SiliconCloud会送一些额度,感兴趣就可以马上上手尝试。

在使用SiliconCloud尝试GraphRag时,为了快速把流程跑通,尝试换一个小一点的文本,先以《嫦娥奔月》的故事为例,进行说明。

步骤跟之前的步骤一样,就是在配置的时候,要改一些地方。

首先将Api Key改成SiliconCloud的Api Key:

image-20240810095355942

settings中需要更改的地方。

首先是对话模型部分:

image-20240810095744402

这里我选用的是meta-llama/Meta-Llama-3.1-70B-Instruct模型,关于模型名字怎么写,参考SiliconCloud的文档,文档地址:https://docs.siliconflow.cn/docs/getting-started

image-20240810100146593

接下来是嵌入模型部分:

image-20240810100316696

这里使用的嵌入模型是BAAI/bge-large-en-v1.5,使用BAAI/bge-large-zh-v1.5我这里会出错,大家也可以试一下,目前不知道什么原因。

嵌入模型名称该怎么写也是见文档:

image-20240810100757105

开始索引化:

image-20240810100903227

查看节点:

image-20240810101324223

查看边:

image-20240810101359837

全局提问:

python -m graphrag.query --root ./change1 --method global "这篇故事讲了什么主题?"

image-20240810100944628

局部提问:

python -m graphrag.query --root ./change1 --method local "嫦娥送了什么礼物给天帝?"

image-20240810101052387

现在把流程跑通了,可以尝试《三国演义》了!!

使用同样的设置,三国字数比较多,比较慢,耐心等待:

img

流程完成:

image-20240810101939345

查看节点:

image-20240810102239596

查看边:

image-20240810102601774

全局提问:

python -m graphrag.query --root ./sanguo --method global "三国讲了什么故事?"

image-20240810102020083

局部提问:

python -m graphrag.query --root ./sanguo --method local "赤壁之战是怎么打败曹操的?"

image-20240810102106817

使用本地模型尝试GraphRag

本地尝试GraphRag可以使用Ollama的对话模型,由于Ollama的嵌入模型没有兼容OpenAI的格式,所以嵌入模型可以使用LM Studio。

配置:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${
   
   GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: llama3.1:70b
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: http://localhost:11434/v1
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${
   
   GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q2_K.gguf
    api_base: http://localhost:1234/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional



chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

理论上跑的起来,但是我的电脑配置不行,跑不了稍微大一点的模型,没法实测。

混合使用

可以接入在线的对话模型Api,嵌入模型用本地的,但是SiliconCloud目前嵌入模型免费使用,也可以直接使用SiliconCloud的嵌入模型。

为了测试有哪些模型能把GraphRag流程跑通,但有些厂商只提供对话模型没有提供嵌入模型或者提供的嵌入模型也不兼容OpenAI格式该怎么办?

可以使用两个Key,一个Key是SiliconCloud用于使用嵌入模型,一个Key是其它厂商的,用于使用对话模型。

比如可以这样设置:

image-20240810103933743

配置文件可以这样写:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${
   
   Other_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: glm-4-air 
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: https://open.bigmodel.cn/api/paas/v4
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${
   
   GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: BAAI/bge-large-en-v1.5
    api_base: https://api.siliconflow.cn/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional



chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

我尝试了多个大模型,经过我这个简单的测试,能把GraphRag流程跑通的(只是跑通,回答效果不一定好)的有如下这些:

image-20240810104317340

image-20240810104349626

温馨提示

GraphRag Token消耗量很大,请注意额度!!

对于一个两千多字的文本,一次GraphRag基本上就要耗费十多万的Token:

image-20240810105125183

image-20240810105429469

参考

1、https://microsoft.github.io/graphrag/posts/get_started/

2、https://siliconflow.cn/zh-cn/siliconcloud

3、https://github.com/microsoft/graphrag/discussions/321

4、https://github.com/microsoft/graphrag/issues/374

5、https://www.youtube.com/watch?v=BLyGDTNdad0

目录
相关文章
|
机器学习/深度学习 存储 人工智能
Gradio入门到进阶全网最详细教程[一]:快速搭建AI算法可视化部署演示(侧重项目搭建和案例分享)
Gradio入门到进阶全网最详细教程[一]:快速搭建AI算法可视化部署演示(侧重项目搭建和案例分享)
|
3月前
|
存储 Python
Python编程入门:从零开始的代码之旅
【9月更文挑战第4天】本文将带领初学者步入Python的世界,通过简明的语言和直观的例子,逐步揭示编程的乐趣。我们将一起构建基础的数据结构,探索控制语句的奥秘,并实现简单的函数。无论你是编程新手还是希望巩固基础,这篇文章都是你理想的起点。让我们开始吧,一步步将代码块搭建成思维的宫殿!
39 2
小白入门必备!计算机科学教程的Python精要参考PDF开放下载!
随着互联网产业的高速发展,在网络上早已积累了极其丰富的Python学习资料,任何人都可以基于这些资源,自学掌握 Python。 但实际上,网络上充斥的资源太多、太杂且不成体系,在没有足够的编程/工程经验之前,仅靠“看”线上资源自学,的确是一件非常困难的事。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
还不会使用MIGraphX推理?试试这篇让你快速入门
使用MIGraphX进行推理一般包括下面几个步骤: 1. 创建模型 2. 低精度优化 3. 编译 4. 执行推理,并返回结果
203 2
|
7月前
|
消息中间件 运维 关系型数据库
KnowStreaming系列教程第一篇——安装和使用
KnowStreaming系列教程第一篇——安装和使用
483 0
|
7月前
|
数据可视化
手把手教你使用 Quarto 构建文档 (2)
手把手教你使用 Quarto 构建文档 (2)
283 0
|
7月前
|
机器学习/深度学习 存储 PyTorch
还没了解MIGraphX推理框架?试试这篇让你快速入门
MIGraphX是一款用于DCU上的深度学习推理引擎,它的目的是为了简化和优化端到端的模型部署流程,包括模型优化、代码生成和推理。MIGraphX能够处理多种来源的模型,如TensorFlow和Pytorch,并提供用户友好的编程界面和工具,使得用户可以集中精力在业务推理开发上,而不需要深入了解底层硬件细节。
229 0
|
机器学习/深度学习 人工智能 自然语言处理
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)
|
小程序 Python
手把手教你使用 Quarto 构建文档 (1)
手把手教你使用 Quarto 构建文档 (1)
998 0
|
中间件 C#
MasaFramework入门第二篇,安装MasaFramework了解各个模板
MasaFramework入门第二篇,安装MasaFramework了解各个模板
216 0
MasaFramework入门第二篇,安装MasaFramework了解各个模板
下一篇
DataWorks