AI大模型应用开发实战(03)-为啥LLM还没能完全替代你?

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
视觉智能开放平台,视频资源包5000点
NLP自然语言处理_高级版,每接口累计50万次
简介: 【8月更文挑战第4天】

1 不具备记忆能力的

它是零状态的,一些大模型产品,尤其他们的API,发现你和它对话,尤其是多轮对话时,经过一些轮次后,这些记忆就消失了,因为它也记不住那么多。

2 上下文窗口的限制

大模型对其输入、输出有数量限制。为保护它自己,这计算能力或保护相当于带宽的概念,如openAI之前只有32k。最新上下文窗口扩张到128k,相当于一本《Clean Code》,这角度来看,这个问题其实已被解决。

但其他很多模型上下文窗口还是比较小,就有很多限制。如不可发一长段prompt或提示词,也不可不停在那对话.

你要注意计算整个窗口token消耗,避免被截断。

3 实时信息更新慢,新旧知识难区分

基于预训练的模型,拿大量数据在神经网络的训练,然后形成模型,其知识库就依赖于拿去训练的这些材料。

底模数据较小时,就会出现幻觉,胡乱回答。

4 无法灵活的操控外部系统

很多大模型只可对话,但无法作为一个外脑去操作外部的一些系统。虽然ChatGPT出现插件机制、开发工具。但实际用后,还是相当于提供一个非常标准的东西,定制开发或更深度融合较难。

若想用大模型作为一个外脑操控智能家居系统、操控汽车,需要有一些连接器和框架帮助。

5 无法为领域问题提供专业靠谱答案

你问泛泛而谈的东西,都能回答好,可一旦问他非常专业问题,就答不上来,因为这专业问题,他可能不涉及。虽然他回答的答案是看起来是像一个人在回答,但一眼就能看出来那个答案不对。

针对以上问题,业界提出两种解决方案,但也都不能彻底解决。

6 解决方案

6.1 微调(Fine-tunning)

主要解决专业问题,专业知识库问题,包括知识更新问题。

把这些数据喂给大模型,再做次训练。其实一次训练也无法解决知识感知信息问题,只能更新其数据库。成本较高,因为相当于把你的数据喂给LLM,然后再全量训练一次,成本很高。

适用场景

做一些自有的大量数据的行业模型。所谓行业模型,如某专业领域的公司,积累大量行业数据,如制药公司在制药过程积累大量制药数据,你希望这个数据以AI智能方式指导工作,就可用这种方式。把这些数据喂给大模型,对它再做一次调教。

这就涉及到

MaaS

Module as a Service,模型即服务。通过这个微调在大模型基础上灌入行业数据,实现这种行业模型,适合手里拥有大量行业数据的。

这也只能解决领域数据专业性和知识库更新问题,无法解决操作外部系统、记忆能力、窗口扩张。

6.2 提示词工程(prompt engineering)

通过上下文提示词设计引导。在LLM基础上把这种专业数据通过:

  • Embedding嵌入
  • prompt提示词

这两个工具实现精准的专业回答,同时可实现:

  • 实时系统的感知
  • 操作外部系统
  • 记忆增强
  • 窗口控制扩张

好处明显,无需训练,不用去在LLM上面做训练。

适用场景

适合数据样本较少的场景。

如你有一本书,希望从这本书得到一些信息,但又不想去一个个字读它,你希望有机器人,你问他问题,他直接从书里找答案。这种就能把书的数据作为专业数据,然后嵌入到LLM,再通过prompt方式去引导,得到精确答案。

这过程中间甚至还可把这些答案,和打印机系统连接,直接打印。

小结

两种都可解决大模型问题,但适用场景不同,各自擅长点不一,很多时候,两者结合效果更好。

微调,现在已经把门槛降到很低了,可直接将你想微调的数据upload上去,但闭源大模型还存有数据安全问题,数据所有性问题和成本问题。

而提示词工程适合开源大模型,如chatglm。若在本地部署大模型,再做这种词嵌入和提示词引导,即可实现企业内部的专业行业模型。但底层LLM可能不那么强大,只有个6b、13b,可能在语言组织或一些智能度上稍低。代表就是LangChain。

7 总结

大模型的这几个问题都有,有两套这样的解决方案:

  • Model as aSerivce 模型即服务通过“微调”技术,在LLM基础上灌入行业数据,实现行业模型
  • promptengineering提示词工程,通过上下文提示词设计31号LM输出精确答案

都有自己的优劣点,然后都有自己适用的场景。

所以用啥方案呢?看所需项目的情况,本专栏偏向提示词工程, 即基于LangChain框架的方式。

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 测试技术
PsycoLLM:开源的中文心理大模型,免费 AI 心理医生,支持心理健康评估与多轮对话
PsycoLLM 是合肥工业大学推出的中文心理大语言模型,基于高质量心理数据集训练,支持心理健康评估、多轮对话和情绪识别,为心理健康领域提供技术支持。
90 51
PsycoLLM:开源的中文心理大模型,免费 AI 心理医生,支持心理健康评估与多轮对话
|
6天前
|
数据采集 人工智能 搜索推荐
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
SocraticLM 是由中科大和科大讯飞联合开发的苏格拉底式教学大模型,通过提问引导学生主动思考,提供个性化教学,显著提升教学效果。
40 9
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
|
3天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
|
1天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY3 - 更热门的多模态交互案例带练,实操掌握AI应用开发
本文章旨在帮助读者了解并掌握大模型多模态技术的实际应用,特别是如何构建基于多模态的实用场景。文档通过几个具体的多模态应用场景,如拍立淘、探一下和诗歌相机,展示了这些技术在日常生活中的应用潜力。
|
3天前
|
人工智能 前端开发 算法
科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
|
4天前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
|
13天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
150 97
|
3天前
|
机器学习/深度学习 人工智能 算法
AI在体育分析与预测中的深度应用:变革体育界的智能力量
AI在体育分析与预测中的深度应用:变革体育界的智能力量
50 31
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
56 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
6天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
42 23