网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt

简介: 本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。

本文主要讲述使用MindOpt工具优化仓储物流调度问题

视频讲解👈👈👈👈👈👈👈👈👈

一、 案例场景

image.png

物流运输是供应链管理的关键,往往涉及到运输、仓储、装卸、配送等。如何合理安排运输方案提高货物运输的效率和可靠性,降低物流成本,一般考虑以下几点因素:第一,供需匹配,根据各地仓库的需求和工厂的产能,合理安排产成品的供应和配送,满足各地仓库的需求。

第二,运输时间和距离,考虑不同地区的仓库的距离和运输时间,合理安排配送车辆的行程和路线。

第三,车辆容量和装载率,考虑配送车辆的数量、类型、容量等因素。

第四,仓库的容量和储存能力,合理的安排产成品的分配和储存。

第五,时间窗口和优先级,根据仓库的营业时间、订单需求以及优先级要求,合理安排产成品的配送时间和顺序。

第六,货物特性和包装要求,考虑产成品的特性和包装要求,合理安排运输车辆和仓库的设施。

二、 数学规划

image.png

仓储物流调度问题也可使用数学规划的方法。

数学规划是一种数学优化方法,主要是寻找变量的取值,在特定的约束情况下,使决策目标得到最大或者最小的决策。数学规划的方法有线性规划、混合整数线性规划以及非线性规划。需要确定问题目标,约束变量取值范围,将其建立成一个数学模型,将数学模型转化为代码进行求解,得出的结果就是最优决策。求解过程中,需要使用优化求解器,可以帮我们求解大规模数据的数学规划问题。

三、 网络流问题

image.png

仓储物流调度问题在数学规划中属于网络流问题的一个类型。网络流问题是指一类基于网络模型的流量分配问题,目标是在网络中分配资源,使得网络的流量满足一定的限制条件,并使某些目标函数最小或者最大化。网络流问题通常涉及到这么一个项图,图中每个节点表示一个资源,每条边表示资源之间的关系,边上的容值表示该边上最多可以流动的资源数量。流量从原节点开始流出,经过一系列的中间节点,最终到达汇集点。在这个过程中,需要遵守一定的流量守恒和容量限制的条件。

具体而言,网络流问题可以分为最大流和最小隔两类。仓储物流调度问题属于最小格问题,是寻找一组格,将网络分为两个部分,并将这些格的容量之和最小化,如在下面相图中,使每条边的流量不超过容量约束,同时达到路径长度最小或者花费最小等目标函数的优化问题。

五、 问题描述

image.png

我们看一下这个例题的问题描述。某企业需将工厂生产的产品配送至配送中心,再由配送中心发往各个仓库,每个产品搬往不同仓库所需要费用不同,而且每条运输路线运输均有上限。

如何安排运输,使配送成本最低?

这个问题要考虑以下两点因素:一是供需匹配,需要满足各个仓库的产品需求。二是成本控制,在满足供需匹配的同时,尽可能降低运输成本。

六、代码解析

image.png

在案例中,我们对这个问题进行数学建模和代码转化,用到MindOpt云上建模求解平台(一个页面版的线上开发环境,可在线的开发调试代码)、以及达摩院研发的建模语言MindOpt APL,与学公式非常贴近。

工具:

声明集合

image.png

  • set CITIES := {"HN", "NE", "SE", "LN", "JL", "HLJ", "JS", "ZJ"} ;
    定义城市集 CITIES,包含了 8 个城市。
  • set LINKS := {<"HN", "NE">, <"HN", "SE">, ..., <"SE", "ZJ">};
    定义连接不同城市的链接集 LINKS,表示城市之间的运输线路。

声明参数

image.png

  • param supply[CITIES] := <"HN"> 450 default 0;
    定义每个城市的供应量 supply,默认为 0,这里只有 "HN" 有供应量 450。
  • param demand[CITIES] := <"JS"> 90, <"ZJ"> 70, <"JL"> 120, <"LN"> 120, <"HLJ"> 50 default 0;
    定义每个城市的需求数量 demand,默认为 0。
  • set C := {"cost", "capacity"};
    定义成本和容量的属性集 C
  • param data[LINKS * C] := ... ;
    定义每条线路的成本和容量数据 data

检查数据

image.png

  • forall {<i> in CITIES } check supply[i] >= 0;
    验证每个城市的供应量是非负的。
  • forall {<i> in CITIES } check demand[i] >= 0;
    验证每个城市的需求数量是非负的。
  • check sum {<i> in CITIES } supply[i] >= sum {<j> in CITIES} demand[j];
    验证总供应量大于等于总需求量。

声明变量

image.png

  • var Ship[<i, j> in LINKS] >= 0 <= data[i, j, "capacity"];
    定义运输变量 Ship,表示每条线路的运输量,其值必须在 0 和该线路的容量之间。

声明目标

image.png

  • minimize Total_Cost: sum {<i, j> in LINKS } data[i, j, "cost"] * Ship[i, j];
    最小化总运输成本。

声明约束

image.png

  • 对于每个城市 k,该城市的供应量 supply[k] 加上进入该城市的运输量 sum {<i, k> in LINKS} Ship[i, k] 必须大于等于该城市的需求数量 demand[k] 加上离开该城市的运输量 sum {<k, j> in LINKS} Ship[k,j]

示例: 假设我们要检查 "JS" 城市的平衡约束,那么有:

  • supply["JS"]: "JS" 城市的供应量。
  • demand["JS"]: "JS" 城市的需求数量。
  • Ship[i, "JS"]: 进入 "JS" 城市的运输量。
  • Ship["JS", j]: 离开 "JS" 城市的运输量。

站点提供的商品数量+发往配送中心的商品数量,至少需要等于配送中心需要的商品数量以及从配送中心发往仓库的商品数量之和,也是满足流量守恒的定义。

结果解析

image.png

求解得到了决策目标,最小化成本是2123。我们从河南发往第一个配送中心的商品数量是250,第二个配送中心是200。由第一个配送中心发往其他三个仓库,分别是100、100和50。在决策变量值上可以看出从第二个配送中心发往其他仓库的商品数量之和也等于200,代表变量的取值也满足约束条件。

七、 内容回顾

本期主要讲述的是网络流问题——仓储物流调度的问题。在满足各个仓库的供货需求的情况下尽量减少运输成本。使用到的工具是MindOpt求解平台,以及建模语言MindOpt APL

获取源代码

image.png

网络流问题:交通调度、仓储运输-MindOpt Studio

相关文章
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
6月前
|
监控 安全 Shell
管道符在渗透测试与网络安全中的全面应用指南
管道符是渗透测试与网络安全中的关键工具,既可用于高效系统管理,也可能被攻击者利用实施命令注入、权限提升、数据外泄等攻击。本文全面解析管道符的基础原理、实战应用与防御策略,涵盖Windows与Linux系统差异、攻击技术示例及检测手段,帮助安全人员掌握其利用方式与防护措施,提升系统安全性。
265 6
|
5月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
540 11
|
6月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
385 0
|
6月前
|
安全 Linux
利用Libevent在CentOS 7上打造异步网络应用
总结以上步骤,您可以在CentOS 7系统上,使用Libevent有效地构建和运行异步网络应用。通过采取正确的架构和代码设计策略,能保证网络应用的高效性和稳定性。
197 0
|
达摩院 Linux API
阿里达摩院MindOpt求解器V1.1新增C#接口
阿里达摩院MindOpt求解器发布最新版本V1.1,增加了C#相关API和文档。优化求解器产品是求解优化问题的专业计算软件,可广泛各个行业。阿里达摩院从2019年投入自研MindOpt优化求解器,截止目前经历27个版本的迭代,取得了多项国内和国际第一的成绩。就在上个月,2023年12月,在工信部产业发展促进中心等单位主办的首届能源电子产业创新大赛上,MindOpt获得电力用国产求解器第一名。本文将为C#开发者讲述如何下载安装MindOpt和C#案例源代码。
626 3
阿里达摩院MindOpt求解器V1.1新增C#接口
|
达摩院 Linux 决策智能
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
### MindOpt 优化求解器月刊(2024年3月) - 发布亮点:MAPL建模语言升级至V2.4,支持云上无安装使用和向量化建模语法。 - 新增功能:Linux用户可本地安装`maplpy`,并支持Python与MAPL混编。 - 实例分享:介绍背包问题的组合优化,展示如何在限定容量下最大化收益。 - 用户投稿:探讨机票超售时的最优调派策略,以最小化赔付成本。 - 加入互动:官方钉钉群32451444,更多资源及。 [查看详细内容](https://opt.aliyun.com/)
278 0
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
|
机器学习/深度学习 达摩院
阿里达摩院MindOpt优化求解器-月刊(2024年4月)
【摘要】2024.04.30,阿里云发布了MindOpt优化求解器的新商品和功能。MindOpt现在已上架,提供超低价零售求解器,支持按需购买,可在阿里云平台上直接购买联网或不联网License。新版本V1.2发布,提升MILP性能,并增加PostScaling参数。此外,MindOpt Studio推出租户定制版,正处于邀测阶段。同时分享了使用MindOpt解决二分类SVM问题的案例。更多内容,可访问相关链接。
523 0
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。

热门文章

最新文章