【类脑计算】突触可塑性模型之Hebbian学习规则和STDP

简介: 本文介绍了突触可塑性中的Hebbian学习规则和STDP(Spike-Timing Dependent Plasticity),两种基于神经元活动调节突触强度的机制,其中Hebbian规则强调同时活动的神经元间的连接增强,而STDP则考虑了脉冲时间差异对突触强度的调节作用。

1 引言

突触可塑性 (Synaptic plasticity)指经验能够修改神经回路功能的能力。特指基于活动修改突触传递强度的能力,是大脑适应新信息的主要调查机制。分为短期和长期突触可塑性,分别作用于不同时间尺度,对感官刺激的短期适应和长期行为改变及记忆存储至关重要。
在这里插入图片描述

非对称 STDP 学习规则与对称 Hebbian 学习规则的区别

2 Hebbian学习规则

(1)数学模型
Hebbian学习是一种神经网络学习理论,它基于Donald Hebb在1949年提出的假设,即“神经元的联合使用会导致它们之间的连接增强”。这种学习规则通常被称为Hebbian规则或Hebbian学习理论,是神经科学和机器学习中理解和模拟大脑学习机制的基础之一。

Hebbian学习的核心思想是,如果两个神经元经常同时活动,它们之间的突触连接会变得更强壮。这可以用以下简单的数学形式表达:

$ \eta x_i x_j $

其中:

  • $ \Delta w_{ij} $是连接权重的增量。
  • η 是一个表示学习速率的小正数。
  • xi​ 和 xj​ 分别是前一个神经元和后一个神经元的激活值。

原始的Hebbian学习规则可以进一步扩展,包括考虑权重的饱和和遗忘机制。例如,引入一个遗忘因子(forgetting factor) γ,可以使得权重随时间衰减,从而模拟短期记忆的遗忘过程:

$ w_{ij}(t+1) = \gamma w_{ij}(t) + \eta x_i(t) x_j(t) $

其中,

  • $ w_{ij}(t) $ 是在时间 ( t ) 时的权重。
  • $ w_{ij}(t+1) $ 是更新后的权重。

这种形式的Hebbian学习规则可以模拟神经元之间的长期增强(Long-Term Potentiation, LTP),这是学习和记忆形成过程中的关键机制之一。

Hebbian学习规则在神经网络中的实现通常涉及突触权重的更新,以响应输入模式的激活。这种学习机制在多种类型的神经网络中都有应用,包括但不限于Hopfield网络、Boltzmann机、以及某些类型的递归神经网络(RNN)和长短期记忆网络(LSTM)。Hebbian学习是无监督学习的一种形式,因为它不需要外部的误差信号来指导学习过程。
(2)Hebbian学习规则的局限性
基本的Hebbian规则可能导致不稳定,因为如果两个神经元的激活水平最初只是弱正相关,规则会增加它们之间的权重,进而强化这种相关性,导致权重进一步增加。为了解决这个问题,可以采用一些稳定化方法,如限制权重的增长或采用更复杂的规则。
(3)改进的Hebbian学习
算法思想是将Hebbian学习规则与奖励机制结合起来以实现强化学习。首先将Hebbian更新与奖励直接相乘,但这种方法存在稳定性问题,因为它不能可靠地跟踪输入、输出和奖励之间的实际协方差。为了解决这个问题,然后提出了节点扰动规则,该规则通过引入随机扰动到神经激活中,并使用这些扰动而不是原始激活来进行权重更新,从而推动网络朝着奖励方向学习。这种方法不仅能够在生物学上合理地实现,而且还能够使网络从稀疏和延迟的奖励中学习复杂的认知或运动任务,实际上实现了REINFORCE算法,为强化学习提供了一种有效的解决方案。

3 STDP

STDP(Spike-Timing Dependent Plasticity)是一种理论模型,它允许基于神经元脉冲的相对时间来修改它们之间连接的强度。与Hebbian学习规则不同,STDP考虑了前突触和后突触脉冲的精确时间。STDP建议,如果前突触神经元在后突触神经元之前脉冲,它们之间的连接应该被加强;反之,则应该被削弱。STDP在多种生物系统中被观察到,并在神经回路的发展和可塑性中,包括学习和记忆过程中发挥关键作用。
当前突触神经元的脉冲出现在后突触神经元脉冲之前(即 $ \Delta t = t_{\text{post}} - t_{\text{pre}} > 0 $),突触权重会增加,这种现象称为长时程增强(Long-Term Potentiation, LTP)。
当前突触神经元的脉冲出现在后突触神经元脉冲之后(即 $ \Delta t = t_{\text{post}} - t_{\text{pre}} < 0 $),突触权重会减小,这种现象称为长时程抑制(Long-Term Depression, LTD)。
STDP的数学表达式比Hebbian学习规则更复杂,常见的公式是:

$ \Delta w_{ij}=\begin{cases}A_+\exp(-\Delta t/\tau_+)&\text{if }\Delta t>0\\-A_-\exp(\Delta t/\tau_-)&\text{if }\Delta t<0\end{cases} $
其中, $ \Delta w{ij} $是神经元i和j之间权重的变化, $ \Delta t $是前突触和后突触脉冲之间的时间差异, A+和 A−分别是增强和抑制的幅度,τ+和 τ−分别是增强和抑制的时间常数。

目录
相关文章
|
3月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
65 5
|
5月前
|
存储 数据采集 数据可视化
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
|
5月前
|
机器学习/深度学习 开发框架 算法
R语言非线性混合效应 NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究
R语言非线性混合效应 NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究
|
5月前
|
机器学习/深度学习 数据可视化 算法
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
|
5月前
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状
|
5月前
|
计算机视觉
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
137 0
|
机器学习/深度学习 传感器 编解码
2023最新 | 单目深度估计网络结构的通用性研究
单目深度估计已经被广泛研究,最近已经报道了许多在性能上显著改进的方法。然而,大多数先前的工作都是在一些基准数据集(如KITTI数据集)上进行评估的,并且没有一项工作对单目深度估计的泛化性能进行深入分析。本文深入研究了各种骨干网络(例如CNN和Transformer模型),以推广单目深度估计。首先,评估了分布内和分布外数据集上的SOTA模型,这在网络训练期间从未见过。然后,使用合成纹理移位数据集研究了基于CNN和Transformer的模型中间层表示的内部属性。通过大量实验,观察到transformer呈现出强烈的形状偏差,而CNN具有强烈纹理偏差。
2023最新 | 单目深度估计网络结构的通用性研究
|
机器学习/深度学习 数据采集 人工智能
ONE-PEACE:探索通往无限模态的通用表征模型
过去几年里,表征模型在自然语言处理、计算机视觉、语音处理等领域取得了巨大的成功。经过大量数据学习的表征模型,不仅可以在各种下游任务上取得良好的效果,还可以作为大规模语言模型(LLM)的基座模型,为LLM提供多模态理解能力。随着多模态技术的发展,尤其CLIP[1]之后大家都意识到一个好的多模态表征模型在很多单模态任务上都会发挥着至关重要的基础模型的作用。学习了大量模态alignment的数据之后的模型逐渐在学会去理解各个模态和模态间蕴含的知识,甚至通过对大量模态的学习促进对其它模态的理解。
21879 7
|
机器学习/深度学习 算法 数据可视化
ICLR 2023 Oral | 漂移感知动态神经网络加持,时间域泛化新框架远超领域泛化&适应方法
ICLR 2023 Oral | 漂移感知动态神经网络加持,时间域泛化新框架远超领域泛化&适应方法
|
机器学习/深度学习 人工智能
一种基于广义模板的图神经网络,用于准确的有机反应性预测
一种基于广义模板的图神经网络,用于准确的有机反应性预测
118 0
下一篇
无影云桌面