[go 面试] 分布式事务框架选择与实践

简介: [go 面试] 分布式事务框架选择与实践

分布式事务是处理跨多个服务的原子操作的关键概念,而选择适合应用场景的框架对于确保事务一致性至关重要。以下是几个常见的分布式事务框架,并讨论它们的使用和实践。


1. XA协议


XA协议是一种经典的分布式事务协议,通过两阶段提交(2PC)来实现事务的原子性。它适用于要求强一致性的场景,但也因为其阻塞和单点故障的问题而受到一些批评。在使用XA协议时,需要确保数据库支持XA事务,并配置协调者和参与者。


实践步骤:


  1. 引入XA协议支持的数据库驱动。
  2. 配置数据库以支持XA事务。
  3. 定义事务的协调者和参与者。
  4. 使用XA协议的API或框架标记事务边界和操作。
  5. 配置和启动XA事务管理器。


2. TCC(Try-Confirm-Cancel)


TCC是一种补偿型分布式事务模式,通过在每个参与者上定义try、confirm和cancel操作来实现事务的一致性。这种模式相对于XA协议更加灵活,适用于一些无法实现强一致性要求的场景。


实践步骤:


  1. 引入TCC框架(如Seata、ByteTCC)的依赖库。
  2. 定义事务的参与者,并实现try、confirm和cancel操作。
  3. 使用TCC框架提供的注解或API标记事务的参与者和操作。
  4. 配置TCC框架的协调者和数据源。
  5. 运行和测试TCC事务。


3. Saga模式


Saga模式是一种长事务模式,通过一系列连续的本地事务来实现分布式事务的一致性。它使用了补偿事务来处理失败情况,适用于需要较长时间完成的业务流程。


实践步骤:


  1. 选择或实现Saga框架(如Eventuate、Axon Framework)。
  2. 定义Saga和本地事务,并实现正向和逆向操作。
  3. 使用框架提供的注解或API标记Saga和本地事务。
  4. 配置Saga框架的协调者和消息传递方式。
  5. 运行和测试Saga事务。


选择分布式事务框架时,需根据业务场景和需求权衡其优缺点。每个框架都有其适用的场景,因此深入理解框架原理和实践步骤是确保分布式事务稳健运行的关键。

相关文章
|
2月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
610 66
|
1月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
93 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
30天前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
|
1月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
74 7
|
1月前
|
存储 监控 Java
招行面试: 分布式调度 设计,要考虑 哪些问题?
45岁资深架构师尼恩在读者交流群中分享了关于设计分布式调度框架时需考虑的关键问题。近期有小伙伴在面试招商银行时遇到了相关难题,因准备不足而失利。为此,尼恩系统化地梳理了以下几点核心内容,帮助大家在面试中脱颖而出,实现“offer直提”。
|
2月前
|
消息中间件 NoSQL Java
面试官必问的分布式锁面试题,你答得上来吗?
本文介绍了分布式锁的概念、实现方式及其在项目中的应用。首先通过黄金圈法则分析了分布式锁的“为什么”、“怎么做”和“做什么”。接着详细讲解了使用 Redisson 和 SpringBoot + Lettuce 实现分布式锁的具体方法,包括代码示例和锁续期机制。最后解释了 Lua 脚本的作用及其在 Redis 中的应用,强调了 Lua 保证操作原子性的重要性。文中还提及了 Redis 命令组合执行时的非原子性问题,并提供了 Lua 脚本实现分布式锁的示例。 如果你对分布式锁感兴趣或有相关需求,欢迎关注+点赞,必回关!
61 2
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
110 2
|
2月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
118 4
|
2月前
|
开发框架 Go 计算机视觉
纯Go语言开发人脸检测、瞳孔/眼睛定位与面部特征检测插件-助力GoFly快速开发框架
开发纯go插件的原因是因为目前 Go 生态系统中几乎所有现有的人脸检测解决方案都是纯粹绑定到一些 C/C++ 库,如 OpenCV 或 dlib,但通过 cgo 调用 C 程序会引入巨大的延迟,并在性能方面产生显著的权衡。此外,在许多情况下,在各种平台上安装 OpenCV 是很麻烦的。使用纯Go开发的插件不仅在开发时方便,在项目部署和项目维护也能省很多时间精力。

热门文章

最新文章