[python]使用标准库logging实现多进程安全的日志模块

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: [python]使用标准库logging实现多进程安全的日志模块

前言

原本应用的日志是全部输出到os的stdout,也就是控制台输出。因其它团队要求也要保留日志文件,便于他们用其他工具统一采集,另一方面还要保留控制台输出,便于出问题的时候自己直接看pod日志。具体需求如下:

  1. 日志支持同时控制台输出和文件输出
  2. 控制台的输出级别可以高点,比如WARNING,个人这边的实际情况是WARNING或ERROR就能判断大部分问题。日志文件的输出级别设置为INFO,如果控制台日志找不到问题,可以具体看日志文件的内容。
  3. 因为用到了多进程,所以写文件的时候要保证多进程安全,避免日志内容不会缺失。
  4. 日志文件可以设置自动分割,避免长时间不清理导致硬盘存储资源浪费。

因为不允许随便使用第三方包,所以只能用标准库的logging。一开始想的方法比较挫——对文件加锁,但改来改去发现根本不能给别人review。翻python官方文档的时候发现logging库有个QueueHandlerQueueListener,简单试了下感觉逻辑还算清楚,遂简单整理了下代码。

示例代码

目录结构如下,main.py是入口脚本,logs目录和app.log将有程序运行时自动生成,主要日志功能放在pkg/log.py文件中。pkg/__init__.py为空文件,仅用于标识为python包。

.
├── main.py
├── logs
│   └── app.log
└── pkg
    ├── __init__.py
    └── log.py

pkg/log.py内容如下,主要提供logger已经配置好的日志对象,该对象先将日志记录到QueueHandler,然后QueueListener从队列中取日志,并分别输出到控制台和日志文件中。close_log_queue()方法将在主进程结束时调用。

import logging
from logging.handlers import TimedRotatingFileHandler, QueueHandler, QueueListener
import sys
import os
# from queue import Queue
from multiprocessing import Queue
log_queue = Queue(-1)
queue_listener = ""
logdir = "logs"
logfile = f"{logdir}/app.log"
if not os.path.exists(logdir):
    os.makedirs(logdir, exist_ok=True)
def set_formatter():
    """设置日志格式化器"""
    fmt = "%(asctime)s | %(levelname)s | %(name)s | %(filename)s:%(lineno)d | %(funcName)s | %(message)s"
    datefmt = "%Y-%m-%d %H:%M:%S"
    return logging.Formatter(fmt, datefmt=datefmt)
def set_queue_handler():
    # 不要给QueueHandler重复设置formatter, 会引起重复嵌套
    handler = QueueHandler(log_queue)
    handler.setLevel(logging.INFO)
    return handler
def set_stream_handler(formatter: logging.Formatter):
    # 输出到控制台的日志处理器
    handler = logging.StreamHandler(sys.stdout)
    handler.setLevel(logging.WARNING)
    handler.setFormatter(formatter)
    return handler
def set_timed_rotating_file_handler(formatter: logging.Formatter):
    # 输出到文件的日志处理器, 每天生成一个新文件, 最多保留10个文件
    handler = TimedRotatingFileHandler(logfile, when="midnight", backupCount=10, encoding="utf-8")
    handler.setLevel(logging.INFO)
    handler.setFormatter(formatter)
    return handler
def close_log_queue():
    # 关闭队列监听器
    global queue_listener
    if queue_listener:
        queue_listener.stop()
def get_logger(name: str = "mylogger", level: int = logging.INFO):
    logger = logging.getLogger(name)
    logger.setLevel(level)
    formatter = set_formatter()
    stream_handler = set_stream_handler(formatter)
    file_handler = set_timed_rotating_file_handler(formatter)
    queue_handler = set_queue_handler()
    logger.addHandler(queue_handler)
    global queue_listener
    if not queue_listener:
        queue_listener = QueueListener(log_queue, stream_handler, file_handler, respect_handler_level=True)
        queue_listener.start()
    return logger
logger = get_logger()
if __name__ == "__main__":
    logger.info("test")
    close_log_queue()

main.py内容如下,主要是创建子进程调用logger,观察日志输出是否正常。

from multiprocessing import Process
from pkg.log import logger, close_log_queue
import os
class MyProcess(Process):
    def __init__(self, delay):
        self.delay = delay
        super().__init__()
    def run(self):
        for i in range(self.delay):
            logger.info(f"pid: {os.getpid()}, {i}")
if __name__ == '__main__':
    logger.info(f"main process pid: {os.getpid()}")
    for i in range(10):
        p = MyProcess(10000)
        p.start()
        p.join()
    logger.info("main process end")
    close_log_queue()

执行输出大致如下所示:

$ tail logs/app.log 
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 1
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 2
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 3
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 4
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 5
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 6
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 7
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 8
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 9
2024-01-22 23:10:17 | INFO | mylogger | main.py:21 | <module> | main process end

补充

logging还内置很多其它handler,比如按文件大小自动切割,日志通过HTTP请求输出,日志输出到syslog等,可按照自己需求进行定制。

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
20天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
196 7
|
24天前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
220 4
|
21天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
179 0
|
22天前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
119 0
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
3326 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
6月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
738 54
|
11月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
301 9
|
9月前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
730 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
8月前
|
监控 Java 应用服务中间件
Tomcat log日志解析
理解和解析Tomcat日志文件对于诊断和解决Web应用中的问题至关重要。通过分析 `catalina.out`、`localhost.log`、`localhost_access_log.*.txt`、`manager.log`和 `host-manager.log`等日志文件,可以快速定位和解决问题,确保Tomcat服务器的稳定运行。掌握这些日志解析技巧,可以显著提高运维和开发效率。
756 13

推荐镜像

更多