[linux]常见内核TCP参数描述与配置

简介: [linux]常见内核TCP参数描述与配置

前言

所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),如果需要固化设置,则需要修改/etc/sysctl.conf(也可以在/etc/sysctl.d目录下新建conf文件)

sysctl命令基本使用

# 查看指定参数
sysctl net.ipv4.tcp_tw_reuse
# 查看所有内核参数
sysctl -a
# 临时修改指定内核参数
sysctl -w net.ipv4.tcp_tw_reuse=1
# 重加载 /etc/sysctl.conf文件
sysctl -p
# 重加载所有系统配置文件
sysctl --system

TIME_WAIT问题

linux系统下,TCP连接断开后,会以TIME_WAIT状态保留一定时间,然后才会释放端口。当并发请求过多的时候,就会产生大量的TIME_WAIT状态的连接。如果没有及时断开,会有大量的端口资源的服务器资源被占用。对此我们有必要调整下linux的TCP内核参数,让系统更快地释放TIME_WAIT连接。

统计TCP各种状态的数量

netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

编辑配置文件/etc/sysctl.conf,加入以下内容:

net.ipv4.tcp_syncookies= 1
net.ipv4.tcp_tw_reuse= 1
net.ipv4.tcp_tw_recycle= 1
net.ipv4.tcp_fin_timeout= 30

生效:

sysctl -p
# 如果编辑的文件在 /etc/sysctl.d/ 目录下, 需要改成使用以下命令
sysctl --system

高并发下端口配置优化

net.ipv4.tcp_keepalive_time= 1200
net.ipv4.ip_local_port_range= 1024 65535
net.ipv4.tcp_max_syn_backlog= 8192
net.ipv4.tcp_max_tw_buckets= 5000

参数说明

对于不同的linux发行版,默认值可能不一样。

net.core.somaxconn

一般情况下默认值是128,不同linux发行版可能会有区别。

该参数用于控制处于监听状态的套接字的最大连接队列长度,对于高并发的nginx服务器而言要注意调大该参数值,比如16384,32768。

net.core.xmem_default和net.core.xmem_max

参数 说明 默认值
net.core.rmem_default 系统范围接收数据的内核缓冲区初始大小 262144byte,即256KB
net.core.wmem_default 系统范围发送数据的内核缓冲区初始大小 262144byte,即256KB
net.core.rmem_max 系统范围接收数据的内核缓冲区最大大小 262144byte,即256KB
net.core.wmem_max 系统范围发送数据的内核缓冲区最大大小 262144byte,即256KB

默认值在不同的linux发行版可能会有所不同。

网络环境良好和内存资源充足的情况下,增大上述四个参数的值有助于提高并发能力,减少丢包和延迟。

网络环境较差或内存资源不足的情况下,可以考虑减小上述四个参数的值。

如果xmem_default的值大于xmem_max的值,将以xmem_max为准,且超出的部分内存将被浪费。

net.ipv4.ip_local_port_range

一般情况下默认值为32768 60999,表示本地端口范围为32768到60999,不同linux发行版可能会有所不同。

常见优化配置:net.ipv4.ip_local_port_range = 1024 65535

通过将本地端口号限制在指定的范围内,可以避免与系统或其它应用程序使用的端口号发生冲突。如果服务器上还运行了后端应用程序,注意要错开后端服务的端口号。

net.ipv4.tcp_fastopen

该参数用于启用或禁用 TCP 的快速打开(TCP Fast Open)功能。TCP 快速打开是一种优化的 TCP 握手过程,旨在减少客户端与服务器之间的往返延迟时间,从而加速连接的建立。传统的 TCP 握手过程需要三次往返(3-way handshake)才能建立连接。而 TCP 快速打开通过在初始 SYN 数据包中携带客户端发送的应用层数据,使服务器可以在接收到 SYN 数据包后直接发送 SYN+ACK 数据包,从而减少了一个往返的延迟。

net.ipv4.tcp_fastopen 参数有以下几个取值:

  • 0:表示禁用 TCP 快速打开功能。
  • 1:表示启用 TCP 快速打开功能。
  • 2:表示启用 TCP 快速打开功能,并允许客户端在第一次握手时发送数据包。

需要注意的是,启用 TCP 快速打开功能需要支持该功能的客户端和服务器。如果客户端或服务器不支持 TCP 快速打开,即使在内核中启用了该功能,TCP 连接仍然会回退到传统的三次握手过程。对于linux服务器,内核版本应高于3.7。

net.ipv4.tcp_fin_timeout

一般情况下默认值为60,单位秒,不同linux发行版可能会有所不同。

用于控制TCP/IP协议栈中的FIN-WAIT-2状态的超时时间。

在TCP协议中,当一段的连接主动关闭后,会进入FIN-WAIT-2状态,等待对方的确认,以确保双方都完成了连接关闭。当FIN-WAIT-2状态持续超过该参数值是,连接会被内核强制关闭,这对于释放系统资源,提高连接处理能力非常重要。

较小的参数值可以更快地释放系统资源,但可能导致一些连接在网络不稳定的情况下被错误地关闭。

net.ipv4.tcp_keepalive_time

一般情况下默认值为7200,单位秒,不同linux发行版可能会有所不同。

该参数用于控制TCP/IP协议栈中的 TCP keepalive 检测时间间隔。TCP keepalive是一种机制,用于检测处于空闲状态的连接是否仍然有效。当一段时间内没有数据传输时,TCP Keepalive会发送一些特定的探测报文到对方,以确认连接的状态。这对于检测死连接、清理空闲连接和提高连接可靠性很重要。

如果该参数值默认2小时,如果修改为很小的值,将会带来频繁的keepalive检测,这会增加网络流量和系统负载,不必要的连接也可能被中断。同时也会增加系统安全问题,攻击者可以利用Keepalive探测报文进行DoS攻击或网络扫描。

net.ipv4.tcp_max_tw_buckets

不同linux发行版可能会有所不同,可能是65536或180000。

该参数用于控制 TIME_WAIT 状态的 TCP 连接的最大数量。当TIME_WAIT数超过该参数值,新的连接请求可能会被丢弃或拒绝。

较小的值会加快清理TIME_WAIT,但可能会有连接异常。一般情况下默认即可,根据实际情况可以考虑减少或增多。

net.ipv4.tcp_max_syn_backlog

一般情况下默认值为1024,不同linux发行版可能会有所不同。

该参数用于控制TCP/IP协议栈中SYN队列的最大长度。在 TCP 握手过程中,当客户端发送 SYN 报文请求建立连接时,服务器端会将这些 SYN 请求放入 SYN 队列中等待处理。net.ipv4.tcp_max_syn_backlog 参数指定了 SYN 队列的最大长度,即能够同时等待处理的 SYN 请求的最大数量。较小的 net.ipv4.tcp_max_syn_backlog 值可能会导致 SYN 队列溢出,从而无法处理所有的连接请求。这可能会导致客户端无法成功建立连接,出现连接超时或连接被拒绝的情况。

net.ipv4.tcp_syncookies

一般情况下默认为0,表示关闭,不同linux发行版可能会有所不同。置为1表示开启。

表示开启SYNCookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击。

当系统遭受SYN Flood攻击时,攻击者会发送大量的TCP SYN请求,消耗服务器资源并导致服务不可用。

启用SYN Cookie机制后,当服务器接收到一个新的 TCP SYN 请求时,会根据该请求生成一个 SYN Cookie,并将 SYN Cookie 发送回给客户端。客户端在后续的请求中需要携带该 SYN Cookie。服务器在收到后续请求时,会验证 SYN Cookie 的合法性,并根据其中的信息还原出原始的 SYN 请求。

通过使用 SYN Cookie 机制,服务器可以在不消耗太多资源的情况下抵御 SYN Flood 攻击,确保系统的稳定性和可用性。

启用 SYN Cookie 机制也可能带来一些问题,一些网络设备可能无法正确处理SYN Cookie的连接请求,导致连接无法建立或其它问题。

net.ipv4.tcp_synack_retries

一般情况下默认为5,不同linux发行版可能会有所不同。

该参数用于设置在连接建立过程中,发送 SYN-ACK(同步应答)包后等待客户端 ACK(确认应答)包的最大重试次数。

在 TCP 连接的三次握手过程中,服务器收到客户端的 SYN(同步)包后,会回复一个 SYN-ACK 包作为应答。然后服务器等待客户端发送 ACK 包来确认连接的建立。如果服务器在等待期间未收到 ACK 包,它将重试发送 SYN-ACK 包,重试次数由 net.ipv4.tcp_synack_retries 参数确定。

网络环境糟糕的情况下可以考虑增加参数值,以允许更多的重试次数,增加连接建立的成功率。

减小参数值有助于快速建立连接和减少资源占用。

net.ipv4.tcp_syn_retries

一般情况下默认为6,不同linux发行版可能会有所不同。

该参数用于设置在连接建立过程中,发送 SYN(同步)包后等待对方响应的最大重试次数。当客户端发送 SYN 包后,如果没有收到服务器的 SYN-ACK(同步应答)包,客户端会重试发送 SYN 包,重试次数由 net.ipv4.tcp_syn_retries 参数确定。

net.ipv4.tcp_timestamps

一般情况下默认为1,表示开启,不同linux发行版可能会有所不同。置为0表示关闭。

启用后允许在TCP报文中添加时间戳信息,用于测量报文的往返时间(RTT)和计算报文的时序。

net.ipv4.tcp_tw_reuse

一般情况下默认为0,表示关闭,不同linux发行版可能会有所不同。置为1表示开启。

允许重用TIME_WAIT Socket,也就是可以重用TIME_WAIT占用的端口。

启用net.ipv4.tcp_tw_reuse也可能带来一些问题。例如,如果处于TIME_WAIT连接上仍然存在未完全处理的数据包,重用该端口可能导致数据包被传递到错误的连接上,从而导致数据错乱或安全问题。

net.ipv4.tcp_tw_recycle

一般情况下默认为0,表示关闭,不同linux发行版可能会有所不同。置为1表示开启。

启用快速回收TIME_WAIT Socket,内核根据一定规则释放TIME_WAIT的端口资源。具体的回收规则可以根据net.ipv4.tcp_timestamps参数和其它相关参数进行调整。

当多个客户端位于同一个NAT网络后面时,启用快速回收可能导致来自不同客户端的连接被错误服用,导致数据错乱或安全问题。

net.ipv4.tcp_rmem和net.ipv4.tcp_wmem

用于设置tcp接收缓冲区和发送缓冲区的大小,有三个值组成,分别是最小值、默认值和最大值。类似于net.core.xmem_default和net.core.xmem_max。不过net.core是系统全局参数,适用于所有类型的socket,包括tcp和udp。

参考

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
安全 网络协议 Linux
深入理解Linux内核模块:加载机制、参数传递与实战开发
本文深入解析了Linux内核模块的加载机制、参数传递方式及实战开发技巧。内容涵盖模块基础概念、加载与卸载流程、生命周期管理、参数配置方法,并通过“Hello World”模块和字符设备驱动实例,带领读者逐步掌握模块开发技能。同时,介绍了调试手段、常见问题排查、开发规范及高级特性,如内核线程、模块间通信与性能优化策略。适合希望深入理解Linux内核机制、提升系统编程能力的技术人员阅读与实践。
364 1
|
23天前
|
存储 Linux 开发工具
Linux环境下使用Buildroot配置软件包
使用Buildroot可以大大简化嵌入式Linux系统的开发和维护工作,但它需要对Linux系统和交叉编译有深入的理解。通过上述步骤,可以有效地配置和定制软件包,为特定的嵌入式应用构建高效、稳定的系统。
136 11
|
3月前
|
监控 Ubuntu Linux
什么Linux,Linux内核及Linux操作系统
上面只是简单的介绍了一下Linux操作系统的几个核心组件,其实Linux的整体架构要复杂的多。单纯从Linux内核的角度,它要管理CPU、内存、网卡、硬盘和输入输出等设备,因此内核本身分为进程调度,内存管理,虚拟文件系统,网络接口等4个核心子系统。
253 0
|
3月前
|
Web App开发 缓存 Rust
|
3月前
|
Ubuntu 安全 Linux
Ubuntu 发行版更新 Linux 内核,修复 17 个安全漏洞
本地攻击者可以利用上述漏洞,攻击 Ubuntu 22.10、Ubuntu 22.04、Ubuntu 20.04 LTS 发行版,导致拒绝服务(系统崩溃)或执行任意代码。
|
12月前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
424 4
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
12月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
478 24
|
11月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####