基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。

研究背景

随着互联网和移动设备的普及,音乐流媒体服务成为人们获取音乐的主要方式。这些平台如Spotify、Apple Music和网易云音乐等,提供了海量的音乐资源,使用户能够随时随地聆听各种类型的音乐。然而,如何在海量的音乐资源中快速找到符合用户偏好的音乐,成为了音乐流媒体服务面临的重要挑战。

音乐推荐系统应运而生,它利用数据挖掘和机器学习技术,分析用户的行为和偏好,自动推荐可能感兴趣的音乐作品。用户画像和协同过滤算法是音乐推荐系统中两种常见且有效的方法。

用户画像是通过收集和分析用户的个人信息、行为数据、社交网络等,构建出用户的偏好模型。通过用户画像,可以准确地了解用户的音乐喜好、收听习惯等,为个性化推荐提供数据支持。用户画像不仅可以提高推荐的准确性,还能增强用户体验,使推荐结果更符合用户的实际需求。

协同过滤算法是一种基于用户行为数据的推荐算法。它分为基于用户的协同过滤和基于物品的协同过滤两种。基于用户的协同过滤通过寻找相似用户,推荐这些相似用户喜欢的音乐;而基于物品的协同过滤则通过寻找相似的音乐作品,推荐用户可能喜欢的音乐。协同过滤算法通过分析用户的历史行为,能够有效地挖掘用户潜在的兴趣,为用户提供个性化的音乐推荐。

在技术实现方面,本文选择了Django框架作为后端开发工具。Django是一个高效、灵活的Python Web框架,具有强大的数据处理和集成能力,能够快速构建和部署Web应用。前端采用Bootstrap框架,它是一个简洁、直观、强大的前端开发框架,使开发者能够轻松创建响应式、移动设备友好的Web页面。在数据库方面,选择了MySQL数据库。MySQL是一种高性能、可靠、开源的关系型数据库管理系统,广泛应用于各种Web应用中。

本文将通过构建一个基于Django框架的音乐推荐系统,结合用户画像和协同过滤算法,提供个性化的音乐推荐服务。系统将收集用户的基本信息和音乐收听记录,生成用户画像,并利用协同过滤算法进行音乐推荐。前端采用Bootstrap框架,提供友好的用户界面和交互体验。MySQL数据库用于存储用户信息和音乐数据,保证数据的高效存取和管理。

通过本研究,我们希望能够提高音乐推荐系统的准确性和用户满意度,帮助用户在海量的音乐资源中找到符合其偏好的音乐作品。同时,本文的研究也为其他领域的推荐系统提供参考和借鉴。

研究现状

随着数字音乐产业的快速发展,音乐推荐系统成为流媒体平台的重要组成部分。为了提升用户体验,许多研究和开发工作集中在如何提高推荐系统的准确性和实时性上。当前,基于用户画像和协同过滤算法的音乐推荐系统在学术界和工业界均得到了广泛应用和研究。

用户画像技术通过收集和分析用户的多维度数据,如人口统计信息、历史行为、社交网络关系等,构建出用户的个性化特征模型。近年来,随着大数据技术和深度学习的进步,用户画像技术在精度和实时性上得到了显著提升。例如,阿里巴巴的推荐系统通过多维度用户画像和实时计算,实现了高度个性化的推荐服务 。此外,Netflix等公司也在利用深度学习技术对用户画像进行建模,从而提升推荐的精确度和用户满意度 。

协同过滤算法是推荐系统中应用最广泛的方法之一。它主要分为基于用户的协同过滤和基于物品的协同过滤两类。基于用户的协同过滤通过寻找相似用户,推荐这些相似用户喜欢的内容;而基于物品的协同过滤则通过寻找相似的物品,推荐用户可能喜欢的内容。近年来,矩阵分解技术和神经网络技术的引入,使协同过滤算法在推荐效果和计算效率上有了显著提升 。例如,Google 的推荐系统采用了矩阵分解和深度神经网络相结合的方法,提高了推荐的精度和实时性 。

在技术实现方面,Django框架作为后端开发的首选工具,因其高效、灵活和安全的特性,得到了广泛应用。Django 提供了丰富的内置功能,如ORM(对象关系映射)、认证系统和管理界面,使开发者能够快速构建和部署复杂的Web应用 。许多学术研究和工业项目都采用Django框架实现推荐系统,例如,一些高校的研究项目通过Django实现了个性化的学习资源推荐系统 。

在前端技术方面,Bootstrap框架以其简洁、直观、响应式设计成为前端开发的热门选择。Bootstrap 提供了丰富的UI组件和强大的CSS框架,使开发者能够轻松创建美观、用户友好的Web界面 。在推荐系统的研究和开发中,Bootstrap 被广泛用于构建用户界面,提升用户体验。

MySQL数据库作为一种高性能、可靠的关系型数据库管理系统,广泛应用于推荐系统的数据存储和管理。MySQL 具有高效的查询性能和灵活的扩展性,能够处理大量的用户数据和音乐数据 。在学术界和工业界,MySQL 常被用于实现推荐系统的数据层,例如,一些大规模的电子商务推荐系统采用MySQL存储用户行为数据和推荐结果 。

主要研究内容

本研究主要聚焦于开发一个基于用户画像及协同过滤算法的音乐推荐系统,系统将采用Django框架、Bootstrap前端以及MySQL数据库。具体研究内容包括以下几个方面:

1. 用户画像构建
通过收集用户的基本信息、音乐收听记录及社交网络数据,构建多维度的用户画像。用户画像的构建将利用大数据分析技术,结合用户的行为特征和偏好,为个性化推荐奠定基础。

2. 协同过滤算法实现
实现基于用户的协同过滤和基于物品的协同过滤两种算法。基于用户的协同过滤通过分析相似用户的行为数据进行推荐;基于物品的协同过滤则通过分析相似音乐作品的特征进行推荐。两种算法的结合能够提高推荐的准确性和多样性。

3. Django框架开发
使用Django框架进行后端开发,实现用户数据的管理、推荐算法的调用以及推荐结果的生成。Django的ORM功能将用于与MySQL数据库的交互,确保数据存取的高效性和安全性。

4. Bootstrap前端设计
采用Bootstrap框架设计前端界面,实现响应式设计,确保在不同设备上的良好用户体验。前端界面将展示推荐结果,并提供用户交互功能,如评分和反馈,进一步优化推荐效果。

5. 系统集成与测试
将各部分功能集成,构建完整的推荐系统,并进行系统测试和性能优化。通过用户测试和反馈,不断改进推荐算法和用户界面,提升系统的实用性和用户满意度。

通过以上研究内容,旨在构建一个高效、准确、用户友好的音乐推荐系统,满足用户个性化的音乐需求。

前端主要代码

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>{% block title %}{% endblock %}</title>
    <link rel="stylesheet" href="/static/css/bootstrap.css">
    <script src="/static/js/jquery.min.js"></script>
    {% block head %}{% endblock %}
</head>
<body>
<div class="container">
    <nav class="navbar navbar-expand-lg navbar-light bg-light">
        <a class="navbar-brand" href="/">音乐推荐系统</a>
        <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
            <span class="navbar-toggler-icon"></span>
        </button>

        <div class="collapse navbar-collapse" id="navbarSupportedContent">
            <ul class="navbar-nav mr-auto">
                <li class="nav-item">
                    <a class="nav-link" href="/">全部音乐</a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="/recommend">推荐音乐</a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="/play">正在播放</a>
                </li>
                {% if request.user.is_authenticated %}
                    <li class="nav-item">
                        <a class="nav-link" href="/user">用户中心</a>
                    </li>
                    <li class="nav-item">
                        <a class="nav-link" href="/logout">注销</a>
                    </li>
                {% else %}
                    <li class="nav-item">
                        <a class="nav-link" href="/sign_in">登录</a>
                    </li>
                    <li class="nav-item">
                        <a class="nav-link" href="/sign_up">注册</a>
                    </li>
                {% endif %}

                <li class="nav-item">
                    <a class="nav-link" href="/admin">管理后台</a>
                </li>
            </ul>
            <form class="form-inline my-2 my-lg-0" method="get" action="/search">
                <input class="form-control mr-sm-2" type="search" placeholder="输入歌曲名称搜索" aria-label="Search" name="keyword">
                <button class="btn btn-outline-success my-2 my-sm-0" type="submit" name="action" value="song_name">搜歌曲</button>
                <button class="btn btn-outline-primary my-2 my-sm-0 ml-2" type="submit" name="action" value="artist_name">搜歌手</button>
            </form>
        </div>
    </nav>

    {% block alert %}
        {% if messages %}
            {% for message in messages %}
                {% if message.tags != 'console' %}
                    <div class="alert alert-{
  
  { message.tags }} mt-3" role="alert">
                        {
  
  { message }}
                    </div>
                {% endif %}
            {% endfor %}
        {% endif %}
    {% endblock %}

    {% block body %}{% endblock %}

    <div class="card">
        <div class="card-body">
            <p class="card-text text-center">Copyright @ MusicRecommend</p>
        </div>
        <div class="card-footer text-center">2024</div>
    </div>

    {% block footer %}{% endblock %}
</div>


</body>
</html>

后端主要代码


def build_df():
    data = []
    for user_profile in UserProfile.objects.all():
        for like_music in user_profile.likes.all():
            data.append([user_profile.user.id, like_music.pk, 1])
        for dislike_music in user_profile.dislikes.all():
            data.append([user_profile.user.id, dislike_music.pk, 0])

    return pd.DataFrame(data, columns=['userID', 'itemID', 'rating'])


def build_predictions(df: pd.DataFrame, user: User):
    userId = user.id
    profile = UserProfile.objects.filter(user=user)
    if profile.exists():
        profile_obj: UserProfile = profile.first()
    else:
        return []

    # 先构建训练集,用SVD训练,再把所有评分过的歌曲放到测试集里,
    # 接着把测试集的数据通过训练的算法放到结果集里
    reader = Reader(rating_scale=(0, 1))
    data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)
    # 构建训练集
    trainset = data.build_full_trainset()
    # 构建算法并训练  e.g有限邻算法
    algo = SVD()
    # 数据拟合
    algo.fit(trainset)

    # 取出当前所有有人评分过的歌曲
    subsets = df[['itemID']].drop_duplicates()
    # 测试集
    testset = []
    for row in subsets.iterrows():
        testset.append([userId, row[1].values[0], 0])
#通过测试集构建预测集
    predictions = algo.test(testset, verbose=True)
    result_set = []

    user_like = profile_obj.likes.all()
    user_dislike = profile_obj.dislikes.all()

    for item in predictions:
        prediction: Prediction = item
        if prediction.est > 0.99:
            music = Music.objects.get(pk=prediction.iid)
            # 去重,不推荐用户已经喜欢的 或不喜欢的音乐
            if music in user_like:
                continue
            if music in user_dislike:
                continue
            result_set.append(music)

    if len(result_set) == 0:
        messages.error(current_request, '你听的歌太少了,多听点歌再来吧~')

    return result_set

运行效果

有需要代码的后台联系,白嫖勿扰

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3月前
|
前端开发 关系型数据库 MySQL
【前端学java】MySQL数据库的本地安装
【8月更文挑战第12天】MySQL数据库的本地安装
47 3
|
3月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
153 1
|
17天前
|
前端开发 JavaScript
Bootstrap Web 前端 UI 框架
Bootstrap 是快速开发 Web 应用程序的前端工具包。
30 3
|
22天前
|
SQL Java 关系型数据库
java连接mysql查询数据(基础版,无框架)
【10月更文挑战第12天】该示例展示了如何使用Java通过JDBC连接MySQL数据库并查询数据。首先在项目中引入`mysql-connector-java`依赖,然后通过`JdbcUtil`类中的`main`方法实现数据库连接、执行SQL查询及结果处理,最后关闭相关资源。
|
1月前
|
关系型数据库 MySQL Java
Django学习二:配置mysql,创建model实例,自动创建数据库表,对mysql数据库表已经创建好的进行直接操作和实验。
这篇文章是关于如何使用Django框架配置MySQL数据库,创建模型实例,并自动或手动创建数据库表,以及对这些表进行操作的详细教程。
61 0
Django学习二:配置mysql,创建model实例,自动创建数据库表,对mysql数据库表已经创建好的进行直接操作和实验。
|
3月前
|
前端开发 JavaScript
这篇文章介绍了如何使用form表单结合Bootstrap格式将前端数据通过action属性提交到后端的servlet,包括前端表单的创建、数据的一级和二级验证,以及后端servlet的注解和参数获取。
这篇文章介绍了使用AJAX技术将前端页面中表单接收的多个参数快速便捷地传输到后端servlet的方法,并通过示例代码展示了前端JavaScript中的AJAX调用和后端servlet的接收处理。
这篇文章介绍了如何使用form表单结合Bootstrap格式将前端数据通过action属性提交到后端的servlet,包括前端表单的创建、数据的一级和二级验证,以及后端servlet的注解和参数获取。
|
3月前
|
前端开发 搜索推荐 JavaScript
Web前端网站(四)- 音乐播放器
【8月更文挑战第9天】页面整体色调背景采用柔和渐变的方式呈现,与主页面的“毒药水式”色彩搭配形成了强烈的对比;周边花瓣缓缓飘落到水面之上形成涟漪。整体给人一种温馨、浪漫的感觉,还可以通过中间的3个按钮来控制音乐的切换和播放效果。每一行代码都有详细注释~~~大家可以尽情创作
39 2
Web前端网站(四)- 音乐播放器
|
3月前
|
前端开发 数据挖掘 关系型数据库
基于Python的哔哩哔哩数据分析系统设计实现过程,技术使用flask、MySQL、echarts,前端使用Layui
本文介绍了一个基于Python的哔哩哔哩数据分析系统,该系统使用Flask框架、MySQL数据库、echarts数据可视化技术和Layui前端框架,旨在提取和分析哔哩哔哩用户行为数据,为平台运营和内容生产提供科学依据。
229 9
|
3月前
|
数据采集 数据可视化 关系型数据库
【优秀python web设计】基于Python flask的猫眼电影可视化系统,可视化用echart,前端Layui,数据库用MySQL,包括爬虫
本文介绍了一个基于Python Flask框架、MySQL数据库和Layui前端框架的猫眼电影数据采集分析与可视化系统,该系统通过爬虫技术采集电影数据,利用数据分析库进行处理,并使用Echart进行数据的可视化展示,以提供全面、准确的电影市场分析结果。
124 4
|
9天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
23 4