基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 本文介绍了一个基于Python协同过滤算法的旅游景点推荐系统,该系统采用Django框架、MySQL数据库、Bootstrap前端和echarts数据可视化技术,旨在为用户提供个性化的旅游推荐服务,提升用户体验和旅游市场增长。

随着旅游业的迅速发展,个性化旅游推荐系统成为提升用户体验和促进旅游市场增长的重要工具。本研究旨在设计并实现一种基于Python协同过滤的旅游景点推荐系统,结合Django框架、MySQL数据库存储、Bootstrap前端框架以及echarts数据可视化技术,为用户提供精准且个性化的旅游推荐服务。

技术与工具选择

  1. Python协同过滤算法

    • 协同过滤是一种常用的推荐算法,通过分析用户的历史行为和偏好来预测其未来的兴趣。本系统将结合用户的旅游历史数据和喜好,利用基于用户的协同过滤算法(如User-Based CF或Item-Based CF)来推荐相似用户或景点。
  2. Django框架

    • Django是一个高效且功能强大的Python Web框架,适用于快速开发安全且可扩展的Web应用程序。通过Django,可以实现用户登录认证、数据管理、后台管理等功能,为推荐系统提供稳定的后端支持。
  3. MySQL数据存储

    • MySQL是一种开源的关系型数据库管理系统,具有高性能、稳定性和可扩展性,适合存储大量的用户数据、景点信息以及推荐结果。
  4. Bootstrap前端框架

    • Bootstrap是一个流行的开源前端框架,提供了响应式布局和丰富的UI组件,能够帮助设计美观、用户友好的Web界面,适应不同设备的显示要求。
  5. echarts数据可视化

    • echarts是一个基于JavaScript的数据可视化库,支持多种图表类型的展示和交互,如折线图、柱状图、地图等。通过echarts,可以直观地展示用户偏好、景点热度图等数据,提升用户对推荐系统结果的理解和信任度。

系统实现与期望效果

本研究将以上技术与工具结合,设计并实现一款完整的旅游景点推荐系统。系统将通过用户登录和个人化设置收集用户数据,利用协同过滤算法生成个性化的推荐列表,并通过Bootstrap提供美观友好的界面,同时使用echarts展示数据可视化效果,帮助用户直观了解推荐依据和推荐结果的有效性。通过这些功能,预期能够提升用户对旅游目的地的选择信心,增加用户的满意度和重复访问率,从而促进旅游市场的发展和经济效益的提升。

前端主要代码

<aside id="sidebar" class="sidebar">

    <ul class="sidebar-nav" id="sidebar-nav">
        <li class="nav-item">
            <a class="nav-link" href="/">
                <i class="bi bi-grid"></i>
                <span>首页</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/type">
                <i class="bi bi bi-bar-chart"></i>
                <span>各省城市景点数量占比</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/top10">
                <i class="bi bi-tsunami"></i>
                <span>各城市景点评论占比</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/jiage">
                <i class="bi bi-funnel-fill"></i>
                <span>各个城市景点发博数量分布</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/ciyun">
                <i class="bi bi-p-circle"></i>
                <span>各景点评论词云展示</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/pinfen">
                <i class="bi bi-p-circle"></i>
                <span>各个城市景点评分走势</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/map">
                <i class="bi bi-p-circle"></i>
                <span>城市地图</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/recommend">
                <i class="bi bi-box"></i>
                <span>热门景点推荐</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/pl">
                <i class="bi bi-cloud"></i>
                <span>情感分析和词频分析</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/like">
                <i class="bi bi-link"></i>
                <span>我的喜欢</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/order">
                <i class="bi bi-border"></i>
                <span>景点预订</span>
            </a>
        </li>
        <li class="nav-item">
            <a class="nav-link collapsed" href="/my_order">
                <i class="bi bi-messenger"></i>
                <span>我的预订</span>
            </a>
        </li>

    </ul>
</aside>

后端主要代码


def register(request):
    if request.method == "GET":
        return render(request, 'register.html')

    if request.method == "POST":
        username = request.POST.get('username')
        password = request.POST.get('password')
        password2 = request.POST.get('password2')
        if password != password2:
            error_msg = '两次密码不一致'
            return render(request, 'register.html', context={'error_msg': error_msg})

        try:
            user = User.objects.create_user(username=username, password=password)
            # 如果注册成功,将用户状态保持
            auth.login(request, user)
            # 将用户重定向到首页
            return redirect(reverse('login'))

        except:
            return render(request, 'register.html', {'register_errmsg': '注册失败'})


def login(request):
    if request.method == "GET":
        return render(request, 'login.html')

    if request.method == 'POST':
        # 验证表单数据
        username = request.POST['username']
        password = request.POST['password']
        login_type = request.POST.get('login_type', 'frontend')
        # 认证用户
        user = auth.authenticate(request, username=username, password=password)
        if user is not None:
            if user.is_active:
                # 登录用户并跳转到相应页面
                auth.login(request, user)
                if login_type == 'admin':
                    return redirect('admin:index')
                else:
                    return redirect('index')
        else:
            error_msg = '用户名或密码错误'
            return render(request, 'login.html', context={'error_msg': error_msg})

项目文件框架

运行效果图

登录页面如上图

数据展示如上图

各省份景点数量占比分析

各城市景点评论占比

各城市景点文章数量区间占比

各景点评论词云图

各个景点评分趋势

景点推荐

情感分析

景点预定

后台管理

数据管理

有看上的可以后台联系,白嫖勿扰

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
102 0
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
32 2
Python实用记录(三):通过netron可视化模型
|
10天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
1月前
|
关系型数据库 MySQL Java
Django学习二:配置mysql,创建model实例,自动创建数据库表,对mysql数据库表已经创建好的进行直接操作和实验。
这篇文章是关于如何使用Django框架配置MySQL数据库,创建模型实例,并自动或手动创建数据库表,以及对这些表进行操作的详细教程。
61 0
Django学习二:配置mysql,创建model实例,自动创建数据库表,对mysql数据库表已经创建好的进行直接操作和实验。
|
2月前
|
数据可视化 Python
Python数据可视化-动态柱状图可视化
Python数据可视化-动态柱状图可视化
|
2月前
|
JSON 数据可视化 数据处理
Python数据可视化-折线图可视化
Python数据可视化-折线图可视化
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
187 0
|
1月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
89 0
|
1月前
|
数据可视化 Python
Python 高级绘图:从基础到进阶的可视化实践
本文介绍了使用 Python 的强大绘图库 matplotlib 实现多种图表绘制的方法,包括简单的折线图、多条折线图、柱状图、饼图、散点图及 3D 图的绘制。通过具体代码示例展示了如何设置轴标签、标题、图例等元素,并指出了 matplotlib 支持更多高级绘图功能。来源:https://www.wodianping.com/app/2024-10/47112.html。
77 0