[python]使用diagrams绘制架构图

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: [python]使用diagrams绘制架构图

简介

diagrams是python的一个第三方库,用于实现使用代码绘制架构图。

安装

依赖于 Graphviz,安装diagrams之前需要先安装 Graphviz(下载压缩包后,将bin目录添加到系统环境变量Path里即可)。

python3 -m pip install diagrams

快速入门

  • main.py
from diagrams import Diagram
from diagrams.aws.compute import EC2
from diagrams.aws.database import RDS
from diagrams.aws.network import ELB
with Diagram("Web Service", show=False):
    ELB("lb") >> EC2("web") >> RDS("userdb")
  • 运行
python main.py

示例

简单的应用组

from diagrams import Diagram
from diagrams.aws.compute import EC2
from diagrams.aws.database import RDS
from diagrams.aws.network import ELB
with Diagram("Grouped Workers", show=False, direction="TB"):
    ELB("lb") >> [EC2("worker1"),
                  EC2("worker2"),
                  EC2("worker3"),
                  EC2("worker4"),
                  EC2("worker5")] >> RDS("events")

web 服务集群

from diagrams import Cluster, Diagram
from diagrams.aws.compute import ECS
from diagrams.aws.database import ElastiCache, RDS
from diagrams.aws.network import ELB
from diagrams.aws.network import Route53
graph_attr = {
    "bgcolor": "transparent" # 透明背景
}
with Diagram("Web 服务集群", show=False, filename="3", graph_attr=graph_attr):
    dns = Route53("DNS")
    lb = ELB("网关")
    with Cluster("Services"):
        svc_group = [ECS("web1"),
                     ECS("web2"),
                     ECS("web3")]
    with Cluster("数据库集群"):
        db_primary = RDS("主库")
        db_primary - [RDS("只读从库")]
    memcached = ElastiCache("memcached")
    dns >> lb >> svc_group
    svc_group >> db_primary
    svc_group >> memcached

事件处理队列

from diagrams import Cluster, Diagram
from diagrams.aws.compute import ECS, EKS, Lambda
from diagrams.aws.database import Redshift
from diagrams.aws.integration import SQS
from diagrams.aws.storage import S3
with Diagram("事件处理", show=False, filename="4"):
    source = EKS("k8s source")
    with Cluster("事件流"):
        with Cluster("Event Workers"):
            workers = [ECS("worker1"),
                       ECS("worker2"),
                       ECS("worker3")]
        queue = SQS("event 队列")
        with Cluster("处理器"):
            handlers = [Lambda("proc1"),
                        Lambda("proc2"),
                        Lambda("proc3")]
    store = S3("事件存储")
    dw = Redshift("analytics")
    source >> workers >> queue >> handlers
    handlers >> store
    handlers >> dw

消息收集系统

from diagrams import Cluster, Diagram
from diagrams.gcp.analytics import BigQuery, Dataflow, PubSub
from diagrams.gcp.compute import AppEngine, Functions
from diagrams.gcp.database import BigTable
from diagrams.gcp.iot import IotCore
from diagrams.gcp.storage import GCS
with Diagram("Message Collecting", show=False, filename="5"):
    pubsub = PubSub("pubsub")
    with Cluster("Source of Data"):
        [IotCore("core1"),
         IotCore("core2"),
         IotCore("core3")] >> pubsub
    with Cluster("Targets"):
        with Cluster("Data Flow"):
            flow = Dataflow("data flow")
        with Cluster("Data Lake"):
            flow >> [BigQuery("bq"),
                     GCS("storage")]
        with Cluster("Event Driven"):
            with Cluster("Processing"):
                flow >> AppEngine("engine") >> BigTable("bigtable")
            with Cluster("Serverless"):
                flow >> Functions("func") >> AppEngine("appengine")
    pubsub >> flow

k8s中3副本pod

from diagrams import Diagram
from diagrams.k8s.clusterconfig import HPA
from diagrams.k8s.compute import Deployment, Pod, ReplicaSet
from diagrams.k8s.network import Ingress, Service
with Diagram("Exposed Pod with 3 Replicas", show=False, filename="6"):
    net = Ingress("domain.com") >> Service("svc")
    net >> [Pod("pod1"),
            Pod("pod2"),
            Pod("pod3")] << ReplicaSet("rs") << Deployment("dp") << HPA("hpa")

k8s有状态架构

from diagrams import Cluster, Diagram
from diagrams.k8s.compute import Pod, StatefulSet
from diagrams.k8s.network import Service
from diagrams.k8s.storage import PV, PVC, StorageClass
with Diagram("Stateful Architecture", show=False, filename="7"):
    with Cluster("Apps"):
        svc = Service("svc")
        sts = StatefulSet("sts")
        apps = []
        for _ in range(3):
            pod = Pod("pod")
            pvc = PVC("pvc")
            pod - sts - pvc
            apps.append(svc >> pod >> pvc)
    apps << PV("pv") << StorageClass("sc")

高级web服务架构

from diagrams import Cluster, Diagram
from diagrams.onprem.analytics import Spark
from diagrams.onprem.compute import Server
from diagrams.onprem.database import PostgreSQL
from diagrams.onprem.inmemory import Redis
from diagrams.onprem.aggregator import Fluentd
from diagrams.onprem.monitoring import Grafana, Prometheus
from diagrams.onprem.network import Nginx
from diagrams.onprem.queue import Kafka
with Diagram("Advanced Web Service with On-Premise", show=False, filename="8"):
    ingress = Nginx("ingress")
    metrics = Prometheus("metric")
    metrics << Grafana("monitoring")
    with Cluster("Service Cluster"):
        grpcsvc = [
            Server("grpc1"),
            Server("grpc2"),
            Server("grpc3")]
    with Cluster("Sessions HA"):
        primary = Redis("session")
        primary - Redis("replica") << metrics
        grpcsvc >> primary
    with Cluster("Database HA"):
        primary = PostgreSQL("users")
        primary - PostgreSQL("replica") << metrics
        grpcsvc >> primary
    aggregator = Fluentd("logging")
    aggregator >> Kafka("stream") >> Spark("analytics")
    ingress >> grpcsvc >> aggregator

高级web服务架构2

from diagrams import Cluster, Diagram, Edge
from diagrams.onprem.analytics import Spark
from diagrams.onprem.compute import Server
from diagrams.onprem.database import PostgreSQL
from diagrams.onprem.inmemory import Redis
from diagrams.onprem.aggregator import Fluentd
from diagrams.onprem.monitoring import Grafana, Prometheus
from diagrams.onprem.network import Nginx
from diagrams.onprem.queue import Kafka
with Diagram(name="Advanced Web Service with On-Premise (colored)", show=False, filename="9"):
    ingress = Nginx("ingress")
    metrics = Prometheus("metric")
    metrics << Edge(color="firebrick", style="dashed") << Grafana("monitoring")
    with Cluster("Service Cluster"):
        grpcsvc = [
            Server("grpc1"),
            Server("grpc2"),
            Server("grpc3")]
    with Cluster("Sessions HA"):
        primary = Redis("session")
        primary - Edge(color="brown", style="dashed") - Redis("replica") << Edge(label="collect") << metrics
        grpcsvc >> Edge(color="brown") >> primary
    with Cluster("Database HA"):
        primary = PostgreSQL("users")
        primary - Edge(color="brown", style="dotted") - PostgreSQL("replica") << Edge(label="collect") << metrics
        grpcsvc >> Edge(color="black") >> primary
    aggregator = Fluentd("logging")
    aggregator >> Edge(label="parse") >> Kafka("stream") >> Edge(color="black", style="bold") >> Spark("analytics")
    ingress >> Edge(color="darkgreen") << grpcsvc >> Edge(color="darkorange") >> aggregator

使用自定义的图标

from urllib.request import urlretrieve
from diagrams import Cluster, Diagram
from diagrams.aws.database import Aurora
from diagrams.custom import Custom
from diagrams.k8s.compute import Pod
# Download an image to be used into a Custom Node class
rabbitmq_url = "https://jpadilla.github.io/rabbitmqapp/assets/img/icon.png"
rabbitmq_icon = "rabbitmq.png"
urlretrieve(rabbitmq_url, rabbitmq_icon)
with Diagram("Broker Consumers", show=False, filename="10"):
    with Cluster("Consumers"):
        consumers = [
            Pod("worker"),
            Pod("worker"),
            Pod("worker")]
    queue = Custom("Message queue", rabbitmq_icon)
    queue >> consumers >> Aurora("Database")

参考

相关文章
|
2月前
|
运维 监控 数据可视化
Python 网络请求架构——统一 SOCKS5 接入与配置管理
通过统一接入端点与标准化认证,集中管理配置、连接策略及监控,实现跨技术栈的一致性网络出口,提升系统稳定性、可维护性与可观测性。
|
5月前
|
设计模式 SQL 人工智能
Python设计模式:从代码复用到系统架构的实践指南
本文以Python为实现语言,深入解析23种经典设计模式的核心思想与实战技巧。通过真实项目案例,展示设计模式在软件开发中的结构化思维价值,涵盖创建型、结构型、行为型三大类别,并结合Python动态语言特性,探讨模式的最佳应用场景与实现方式,帮助开发者写出更清晰、易维护的高质量代码。
264 1
|
5月前
|
设计模式 人工智能 算法
Python设计模式:从代码复用到系统架构的实践指南
本文探讨了电商系统中因支付方式扩展导致代码臃肿的问题,引出设计模式作为解决方案。通过工厂模式、策略模式、单例模式等经典设计,实现代码解耦与系统扩展性提升。结合Python语言特性,展示了模块化、装饰器、适配器等模式的实战应用,并延伸至AI时代的设计创新,帮助开发者构建高内聚、低耦合、易维护的软件系统。
345 0
|
3月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
531 7
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1168 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
7月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
272 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
运维 负载均衡 安全
深度解析:Python Web前后端分离架构中WebSocket的选型与实现策略
深度解析:Python Web前后端分离架构中WebSocket的选型与实现策略
399 0
|
9月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
575 4

推荐镜像

更多