基于python flask +pyecharts实现的气象数据可视化分析大屏

简介: 本文介绍了一个基于Python Flask和Pyecharts技术实现的气象数据可视化分析大屏,该系统通过图表展示气象数据,提供实时监测和数据分析功能,帮助用户和决策者进行有效应对措施的制定。

背景

气象数据可视化分析大屏基于Python Flask和Pyecharts技术,旨在通过图表展示气象数据的分析结果,提供直观的数据展示和分析功能。在当今信息化时代,气象数据的准确性和实时性对各行业具有重要意义。通过搭建气象数据可视化分析大屏,用户可以实时监测和分析气象数据趋势,帮助决策者制定有效的应对措施。该系统将为气象领域的研究人员、气象服务机构和相关行业提供强大的数据分析和决策支持,推动气象信息化应用的发展和提升。

前端设计

前端设计的关键步骤:

页面布局设计:

使用Flex布局将页面分为左侧、中间和右侧三个主要部分,每个部分包含多个子元素。
左侧和右侧各包含三个垂直排列的子元素,用于展示不同类型的数据。
中间部分用于显示地图数据,并包含一个计时器显示当前时间。

样式设计:

设置全局样式,包括页面背景色、字体颜色、间距等,确保页面整体风格统一。
设计每个数据展示框的样式,包括边框样式、高度、宽度等,使其具有辨识度。
为表格容器添加滚动条样式,确保表格数据超出容器高度时可以滚动查看。

数据填充与更新:

使用JavaScript和jQuery库实现数据的动态填充和更新,通过Ajax请求从后端获取最新数据并更新图表。
在表格部分,根据后端返回的数据动态生成表格行,并实现表格的滚动效果。

图表展示:

使用ECharts库初始化各个图表实例,并根据后端返回的数据更新图表内容。
不仅展示静态图表,还可以通过定时器定时刷新数据,实现实时数据展示。
通过以上设计,可以实现一个交互性强、信息展示清晰的气象数据可视化大屏,为用户提供直观、动态的数据分析和监控功能。

后端设计

主要代码

import json
# from 天气处理 import *
app = Flask(__name__, static_folder="templates")
textstyle = opts.TextStyleOpts(color="white")
idx = 9
import pandas as pd
def chuli():
    df=pd.read_csv(r'C:\Users\Administrator\Desktop\天气大屏flask+pyecharts\Flask_DataView_new\天气数据.csv')
    df['省份']=df['省份'].str.replace('历史天气','')
    # 完整的省份映射字典
    mapping_dict = {
        "北京": "北京市",
        "天津": "天津市",
        "河北": "河北省",
        "山西": "山西省",
        "内蒙古": "内蒙古自治区",
        "辽宁": "辽宁省",
        "吉林": "吉林省",
        "黑龙江": "黑龙江省",
        "上海": "上海市",
        "江苏": "江苏省",
        "浙江": "浙江省",
        "安徽": "安徽省",
        "福建": "福建省",
        "江西": "江西省",
        "山东": "山东省",
        "河南": "河南省",
        "湖北": "湖北省",
        "湖南": "湖南省",
        "广东": "广东省",
        "广西": "广西壮族自治区",
        "海南": "海南省",
        "重庆": "重庆市",
        "四川": "四川省",
        "贵州": "贵州省",
        "云南": "云南省",
        "西藏": "西藏自治区",
        "陕西": "陕西省",
        "甘肃": "甘肃省",
        "青海": "青海省",
        "宁夏": "宁夏回族自治区",
        "新疆": "新疆维吾尔自治区",
        "香港": "香港特别行政区",
        "澳门": "澳门特别行政区",
        "台湾": "台湾省"
    }
    # 使用map函数将现有数据替换为省、自治区或市
    df["省份"] = df["省份"].map(mapping_dict)
    df['最高温']=df['最高温'].str.replace('°','').astype('int')
    df['最低温']=df['最低温'].str.replace('°','').astype('int')
    df['空气指数']=df['空气质量指数'].str.split(' ',expand=True)[0]
    df['空气等级']=df['空气质量指数'].str.split(' ',expand=True)[1]
    df['风力风向']=df['风力风向'].str.replace('微风','0级')
    df['风向']=df['风力风向'].str.split('风',expand=True)[0]+'风'
    df['风力']=df['风力风向'].str.split('风',expand=True)[1]
    df['风力']=df['风力'].str.replace('级','').astype('int')
    df['时间0']=df['时间'].str.split(' ',expand=True)[0]
    print(df['时间0'])
    print(df.info())
    return df
def avg_qw():
    df=chuli()
    df['年']=df['时间'].str.split('-',expand=True)[0]
    a=df.groupby('年')['最低温','最高温'].mean().reset_index()
    a['最低温']=a['最低温'].round(1)
    a['最高温'] = a['最高温'].round(1)
    print(a)
    return a

可视化代码:


def map_base():
    df=chuli()
    df = df[~df['空气指数'].isin(['-'])]
    df['空气指数'] = df['空气指数'].astype('int')
    b = df.groupby('省份')['空气指数'].max().reset_index()
    m = (
        Map()
            .add('', [list(z) for z in zip(b['省份'].tolist(), b['空气指数'].tolist())], 'china')
            .set_series_opts(label_opts=opts.LabelOpts(color='white'))
            .set_global_opts(
            title_opts=opts.TitleOpts(title='全国各省份空气指数'),
            visualmap_opts=opts.VisualMapOpts(max_=40, split_number=8, is_piecewise=True),
        )
    )

    return m

最终效果:

相关文章
|
7天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
2天前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
10 1
|
2天前
|
JSON API 数据格式
构建RESTful APIs:使用Python和Flask
构建RESTful APIs:使用Python和Flask
10 1
|
4天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
5天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
20 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
13天前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
16 4
|
13天前
|
JSON API 数据格式
使用Python和Flask构建简单的RESTful API
【10月更文挑战第12天】使用Python和Flask构建简单的RESTful API
34 1
|
13天前
|
JSON API 数据格式
构建RESTful APIs:使用Python和Flask
【10月更文挑战第12天】本文介绍了如何使用Python和Flask构建一个简单的RESTful API。首先概述了API的重要性及RESTful API的基本概念,接着详细讲解了Flask框架的特性和安装方法。通过创建一个基本的Flask应用,定义了处理“图书”资源的GET、POST、PUT和DELETE方法的路由,展示了如何处理请求和响应,以及如何进行错误处理。最后,提供了运行和测试API的方法,总结了Flask在构建RESTful API方面的优势。
27 1
|
14天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
34 2
|
13天前
|
API 网络架构 Python
使用Python和Flask构建简单的RESTful API
【10月更文挑战第12天】使用Python和Flask构建简单的RESTful API
23 0