基于python flask +pyecharts实现的气象数据可视化分析大屏

简介: 本文介绍了一个基于Python Flask和Pyecharts技术实现的气象数据可视化分析大屏,该系统通过图表展示气象数据,提供实时监测和数据分析功能,帮助用户和决策者进行有效应对措施的制定。

背景

气象数据可视化分析大屏基于Python Flask和Pyecharts技术,旨在通过图表展示气象数据的分析结果,提供直观的数据展示和分析功能。在当今信息化时代,气象数据的准确性和实时性对各行业具有重要意义。通过搭建气象数据可视化分析大屏,用户可以实时监测和分析气象数据趋势,帮助决策者制定有效的应对措施。该系统将为气象领域的研究人员、气象服务机构和相关行业提供强大的数据分析和决策支持,推动气象信息化应用的发展和提升。

前端设计

前端设计的关键步骤:

页面布局设计:

使用Flex布局将页面分为左侧、中间和右侧三个主要部分,每个部分包含多个子元素。
左侧和右侧各包含三个垂直排列的子元素,用于展示不同类型的数据。
中间部分用于显示地图数据,并包含一个计时器显示当前时间。

样式设计:

设置全局样式,包括页面背景色、字体颜色、间距等,确保页面整体风格统一。
设计每个数据展示框的样式,包括边框样式、高度、宽度等,使其具有辨识度。
为表格容器添加滚动条样式,确保表格数据超出容器高度时可以滚动查看。

数据填充与更新:

使用JavaScript和jQuery库实现数据的动态填充和更新,通过Ajax请求从后端获取最新数据并更新图表。
在表格部分,根据后端返回的数据动态生成表格行,并实现表格的滚动效果。

图表展示:

使用ECharts库初始化各个图表实例,并根据后端返回的数据更新图表内容。
不仅展示静态图表,还可以通过定时器定时刷新数据,实现实时数据展示。
通过以上设计,可以实现一个交互性强、信息展示清晰的气象数据可视化大屏,为用户提供直观、动态的数据分析和监控功能。

后端设计

主要代码

import json
# from 天气处理 import *
app = Flask(__name__, static_folder="templates")
textstyle = opts.TextStyleOpts(color="white")
idx = 9
import pandas as pd
def chuli():
    df=pd.read_csv(r'C:\Users\Administrator\Desktop\天气大屏flask+pyecharts\Flask_DataView_new\天气数据.csv')
    df['省份']=df['省份'].str.replace('历史天气','')
    # 完整的省份映射字典
    mapping_dict = {
        "北京": "北京市",
        "天津": "天津市",
        "河北": "河北省",
        "山西": "山西省",
        "内蒙古": "内蒙古自治区",
        "辽宁": "辽宁省",
        "吉林": "吉林省",
        "黑龙江": "黑龙江省",
        "上海": "上海市",
        "江苏": "江苏省",
        "浙江": "浙江省",
        "安徽": "安徽省",
        "福建": "福建省",
        "江西": "江西省",
        "山东": "山东省",
        "河南": "河南省",
        "湖北": "湖北省",
        "湖南": "湖南省",
        "广东": "广东省",
        "广西": "广西壮族自治区",
        "海南": "海南省",
        "重庆": "重庆市",
        "四川": "四川省",
        "贵州": "贵州省",
        "云南": "云南省",
        "西藏": "西藏自治区",
        "陕西": "陕西省",
        "甘肃": "甘肃省",
        "青海": "青海省",
        "宁夏": "宁夏回族自治区",
        "新疆": "新疆维吾尔自治区",
        "香港": "香港特别行政区",
        "澳门": "澳门特别行政区",
        "台湾": "台湾省"
    }
    # 使用map函数将现有数据替换为省、自治区或市
    df["省份"] = df["省份"].map(mapping_dict)
    df['最高温']=df['最高温'].str.replace('°','').astype('int')
    df['最低温']=df['最低温'].str.replace('°','').astype('int')
    df['空气指数']=df['空气质量指数'].str.split(' ',expand=True)[0]
    df['空气等级']=df['空气质量指数'].str.split(' ',expand=True)[1]
    df['风力风向']=df['风力风向'].str.replace('微风','0级')
    df['风向']=df['风力风向'].str.split('风',expand=True)[0]+'风'
    df['风力']=df['风力风向'].str.split('风',expand=True)[1]
    df['风力']=df['风力'].str.replace('级','').astype('int')
    df['时间0']=df['时间'].str.split(' ',expand=True)[0]
    print(df['时间0'])
    print(df.info())
    return df
def avg_qw():
    df=chuli()
    df['年']=df['时间'].str.split('-',expand=True)[0]
    a=df.groupby('年')['最低温','最高温'].mean().reset_index()
    a['最低温']=a['最低温'].round(1)
    a['最高温'] = a['最高温'].round(1)
    print(a)
    return a

可视化代码:


def map_base():
    df=chuli()
    df = df[~df['空气指数'].isin(['-'])]
    df['空气指数'] = df['空气指数'].astype('int')
    b = df.groupby('省份')['空气指数'].max().reset_index()
    m = (
        Map()
            .add('', [list(z) for z in zip(b['省份'].tolist(), b['空气指数'].tolist())], 'china')
            .set_series_opts(label_opts=opts.LabelOpts(color='white'))
            .set_global_opts(
            title_opts=opts.TitleOpts(title='全国各省份空气指数'),
            visualmap_opts=opts.VisualMapOpts(max_=40, split_number=8, is_piecewise=True),
        )
    )

    return m

最终效果:

相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1208 1
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
394 0
|
2月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
232 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
675 86
|
JSON API 数据格式
使用Python和Flask构建简单的Web API
使用Python和Flask构建简单的Web API

推荐镜像

更多