使用Numpy进行高效的Python爬虫数据处理

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 使用Numpy进行高效的Python爬虫数据处理

在当今信息爆炸的时代,数据无处不在,而爬虫技术则是从互联网上抓取数据的重要手段。然而,抓取到的原始数据往往需要经过清洗和处理才能转化为有用的信息。这就是Numpy库大展身手的地方。Numpy是一个开源的Python科学计算库,专为进行大规模数值计算而设计。本文将介绍如何使用Numpy进行高效的Python爬虫数据处理。
Numpy简介
Numpy(Numerical Python的简称)是一个强大的Python库,提供了多维数组对象、派生对象(如掩码数组和矩阵)以及用于快速数组操作的例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅立叶变换、基本线性代数、基本统计运算、随机模拟等。
为什么选择Numpy进行爬虫数据处理

  1. 高效的数值计算:Numpy内部使用C语言编写,能够提供高效的数值计算能力。
  2. 灵活的数组操作:Numpy提供了丰富的数组操作,包括切片、索引、广播等。
  3. 丰富的函数库:Numpy拥有大量的数学和统计函数,可以方便地进行数据的数学处理和统计分析。
  4. 与其他库的兼容性:Numpy是许多其他科学计算和数据分析库的基础,如Pandas、SciPy、Scikit-learn等。
    使用Numpy进行数据处理的步骤
  5. 数据抓取
    首先,我们需要使用爬虫技术抓取数据。这里以requests库为例,抓取一个网页上的数据。
  6. 数据解析
    抓取到的数据通常是HTML或JSON格式,需要解析成可以处理的格式。这里以BeautifulSoup库解析HTML为例。
  7. 数据转换
    将解析出来的数据转换为Numpy数组,方便后续处理。
  8. 数据清洗
    使用Numpy进行数据清洗,如去除空值、异常值等。
  9. 数据分析
    进行数据分析,如计算平均值、中位数、标准差等。
  10. 数据可视化(可选)
    使用Matplotlib库结合Numpy进行数据可视化。
    以下是上述过程的完整代码实现:
    ```import requests
    from bs4 import BeautifulSoup
    import numpy as np
    import matplotlib.pyplot as plt

代理服务器配置

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"
proxies = {
'http': f'http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}',
'https': f'https://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}'
}

数据抓取

url = 'http://example.com/data'
try:
response = requests.get(url, proxies=proxies)
response.raise_for_status() # 检查请求是否成功
data = response.text
except requests.exceptions.HTTPError as errh:
print(f"HTTP Error: {errh}")
except requests.exceptions.ConnectionError as errc:
print(f"Error Connecting: {errc}")
except requests.exceptions.Timeout as errt:
print(f"Timeout Error: {errt}")
except requests.exceptions.RequestException as err:
print(f"OOps: Something Else: {err}")

数据解析

soup = BeautifulSoup(data, 'html.parser')
table_data = soup.find_all('tr')

数据转换

numeric_data = []
for tr in table_data:
tr_data = [float(td.text) for td in tr.find_all('td')]
numeric_data.append(tr_data)
data_array = np.array(numeric_data)

数据清洗

data_array = np.nan_to_num(data_array)
q99 = np.percentile(data_array, 99)
data_array[data_array > q99] = np.nan

数据分析

mean_value = np.mean(data_array)
median_value = np.median(data_array)
std_dev = np.std(data_array)
print(f"Mean: {mean_value}, Median: {median_value}, Std Dev: {std_dev}")

数据可视化

plt.hist(data_array.flatten(), bins=20)
plt.title('Data Distribution')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()
```

相关文章
|
1月前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
1天前
|
人工智能 分布式计算 数据处理
有奖评测,基于分布式 Python 计算服务 MaxFrame 进行数据处理
阿里云MaxCompute MaxFrame推出分布式Python计算服务MaxFrame评测活动,助力开发者高效完成大规模数据处理、可视化探索及ML/AI开发。活动时间为2024年12月17日至2025年1月31日,参与者需体验MaxFrame并发布评测文章,有机会赢取精美礼品。
|
7天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
8天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
17天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
22天前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
29天前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
2月前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。