【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

简介: 本文介绍了2023年第十三届MathorCup高校数学建模挑战赛A题的解决方案,深入探讨了量子计算机在信用评分卡组合优化中的应用,提供了详细的建模过程、QUBO模型构建方法以及相应的Python代码实现,并在42页的论文中详细阐述了研究成果。

相关信息

(1)建模思路

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

(2)完整论文

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码

请添加图片描述

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

相关信息

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

1 题目

在银行信用卡或相关的贷款等业务中,对客户授信之前,需要先通过 各种审核规则对客户的信用等级进行评定,通过评定后的客户才能获得信 用或贷款资格。规则审核过程实际是经过一重或者多重组合规则后对客户 进行打分,这些规则就被称为信用评分卡,每个信用评分卡又有多种阈值 设置(但且只有一个阈值生效),这就使得不同的信用评分卡在不同的阈值 下,对应不同的通过率和坏账率,一般通过率越高,坏账率也会越高,反 之,通过率越低,坏账率也越低。对银行来说,通过率越高,通过贷款资格审核的客户数量就越多,相 应的银行获得的利息收入就会越多,但高通过率一般对应着高坏账率,而 坏账意味着资金的损失风险,因此银行最终的收入可以定义为:最终收入 = 贷款利息收入 - 坏账损失

下表举例 3 个不同的信用评分卡,可以看到每种信用评分卡有 10 个阈值,每种阈值对应不同的坏账率和通过率:

在这里插入图片描述

赛题说明 1:流程简化及示例

由于银行场景的复杂性,往往需要采用选择多个不同的信用评分卡进 行组合来实现最佳的风险控制策略。而实际中的信用评分卡组合是一个非 常复杂的过程,为便于建模,我们将该问题进行做如下简化(本简化只适 用本次比赛赛题,不能完全代表实际场景)。假设贷款资金为 1000000 元,银行贷款利息收入率为 8%,并以上面列举的三个信用评分卡作为选定的信用评分卡组合来测算银行最终收入。由于每一信用评分卡有且只可选择 1 个阈值,假设信用评分卡 1 的阈值设置为 8,则通过表格可知,对应通过率为 70%,坏账率为 4.00%,信用评分卡 2 的阈值设置为 6,则通过率为 50%,坏账率为 2.70%,信用评分卡3 的阈值设置为 7,则通过率为 62%,坏账率为 3.70%。例如如果我们选择三重信用卡组合策略,那么这三种信用评分卡组合 后的总通过率为所有信用评分卡通过率相乘,即:0.7×0.5×0.62 = 0.217。总坏账率为三种信用评分卡对应坏账率的平均值,即:1/3×(0.04+0.027+0.037) = 0.0367。基于以上条件可求得,本次贷款利息收入为:贷款资金×利息收入率×总通过率×(1-总坏账率),即:1000000×0.08×(0.7×0.5×0.62) ×(1-1/3×(0.04+0.027+0.037)) =16758.18(元)。由坏账带来的坏账损失为:贷款资金×总通过率×总坏账率,即:1000000×(0.7×0.5×0.62) ×(1/3×(0.04+0.027+0.037))=7522.666(元)。那么银行的最终收入为:贷款利息收入**-**坏账损失,即

16758.18-7522.666 = 9235.514 (元)

由此可见,选择不同的信用评分卡,不同的阈值组合,会给银行带来 不同的收入与损失,由此决定银行最终收入。因此,银行的目标是选择最 合理的信用评分卡组合以及其阈值,使得银行最终收入最多。

赛题说明2:QUB 模型简介

QUBO 模型是指二次无约束二值优化(Quadratic Unconstrained Binary Optimization)模型,它是一种用于解决组合优化问题的数学模型。在QUBO模型中,需要将问题转化为一个决策变量为二值变量,目标函数是一个二 次函数形式优化模型。

QUBO 模型可以运行在量子计算机硬件上,通过量子计算机进行毫秒级的加速求解。这种模型和加速方式在未来各行业中将得到广泛的实际应 用。因此现阶段研究基于 QUBO 模型的量子专用算法十分有应用价值。例如典型的图着色、旅行商问题、车辆路径优化问题等,都可以转化为 QUBO 模型并借助于量子计算机求解。

相关的 QUBO 的转化方法与例子可参考附件 2 中的参考文献。

赛题说明3:赛题数据

附件 1 中共包含 100 张信用评分卡,每张卡可设置 10 种阈值之一,并对应各自的通过率与坏账率共 200 列,其中 t_1 代表信用评分卡 1 的通过率共 10 项,h_1 代表信用评分卡 1 的坏账率共 10 项,依次类推 t_100 代表信用评分卡 100 的通过率,h_100 代表信用评分卡 100 的坏账率。根据上面的赛题说明及附件 1 中的数据,请你们团队通过建立数学模型完成如下问题 1 至问题 3。

问题 1:在 100 个信用评分卡中找出 1 张及其对应阈值,使最终收入

最多,请针对该问题进行建模,将该模型转为 QUBO 形式并求解。

问题 2:假设赛题说明 3 目前已经选定了数据集中给出的信用评分卡1、信用评分卡 2、信用评分卡 3 这三种规则,如何设置其对应的阈值,使最终收入最多,请针对该问题进行建模,将模型转为 QUBO 形式并求解。

问题 3:从所给附录中 100 个信用评分卡中任选取 3 种信用评分卡, 并设置合理的阈值,使得最终收入最多,请针对该问题进行建模,并将模 型转为 QUBO 形式并求解。

2 论文介绍

量子计算机在信用评分卡组合优化中的应用

摘要

本文研究银行如何根据信用评分卡对客户的信誉及其信贷风险做出评估,然后依托不同信用评分卡对应的档位阈值来确定是否放贷的信贷优化策略。
针对问题一,对附件1中给定的100张信用评分卡进行特征提取,综合考虑每张信用卡及其对应的10档阈值的通过率、坏账率这两类指标,然后通过计算求出当银行收入最大化时对应的信用卡号及其档位阈值。本文通过使用QUBO 模型作为求解器,将问题转化为一个决策变量为二值变量,目标函数是一个二次函数形式优化模型。
针对问题二,对于已选定的信用评分卡1、信用评分卡2、信用评分卡3组成的三重信用卡进行特征提取,计算得出总通过率与总坏账率,然后通过计算求出当银行收入最大化时三张信用卡对应的档位阈值。通过问题一建立的QUBO 求解器进行求解,对三重信用卡组合作优化评估。
针对问题三,在问题二的基础上,在100张信用卡种任选三张卡,进行特征提取,然后做与问题二相同的处理,通过计算求出,当银行收入最大化时对应的三张信用卡的卡号及其对应的档位阈值。利用QUBO求解器进行求解。

关键词:QUBO模型 组合优化 量子计算机 量子退火算法

在这里插入图片描述

3 获取方式

浏览器输入

betterbench.top/#/69/detail

目录
相关文章
|
5月前
|
传感器 机器学习/深度学习 数据采集
2022年第十一届认证杯数学中国数学建模国际赛小美赛:C 题 对人类活动进行分类 建模方案及代码实现
本文提供了2022年第十一届认证杯数学中国数学建模国际赛小美赛C题"对人类活动进行分类"的建模方案和Python代码实现,包括数据预处理、特征提取、LSTM网络模型构建和训练评估过程。
71 11
2022年第十一届认证杯数学中国数学建模国际赛小美赛:C 题 对人类活动进行分类 建模方案及代码实现
|
4月前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1720 17
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
5月前
|
算法 量子技术 vr&ar
【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现
本文详细介绍了2023年第十三届MathorCup高校数学建模挑战赛A题的解题过程,包括量子计算机在信用评分卡组合优化中的应用,提供了详细的建模方案、QUBO模型的构建方法以及相应的代码实现。
223 3
【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现
|
5月前
|
数据采集 量子技术 双11
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现
本文提供了2023年第十三届MathorCup高校数学建模挑战赛C题的详细建模方案及代码实现,针对电商物流网络中的包裹应急调运与结构优化问题,提出了包括时间序列分析在内的多种数学模型,并探讨了物流网络的鲁棒性。
78 2
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
102 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
5月前
|
算法 安全 量子技术
【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码
本文介绍了2023年第十三届MathorCup高校数学建模挑战赛B题的研究成果,提供了城市轨道交通列车时刻表优化问题的详细建模方案、C++代码实现以及42页的完整论文,旨在通过贪心算法、二分搜索法和多目标规划等方法最小化企业运营成本并最大化服务水平。
102 0
【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码
|
5月前
|
机器学习/深度学习 监控 安全
【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码
本文介绍了2023年第十三届MathorCup高校数学建模挑战赛D题的解决方案,涉及航空安全风险分析和飞行技术评估问题,提出了基于主成分分析、梯度提升决策树(GBDT)和BP-神经网络模型的综合方法,并通过27页的论文详细阐述了建模过程和仿真模拟结果。
70 0
【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码
|
5月前
【2023 华数杯全国大学生数学建模竞赛】 A题 隔热材料的结构优化控制研究 问题分析及完整论文
本文提供了2023年华数杯全国大学生数学建模竞赛A题的完整论文,深入分析了隔热材料的结构优化控制研究,包括建立数学模型、求解单根纤维的热导率、优化织物结构参数以及考虑对流换热影响的模型调整,旨在开发出具有更优隔热性能的新型织物。
87 0
【2023 华数杯全国大学生数学建模竞赛】 A题 隔热材料的结构优化控制研究 问题分析及完整论文
|
5月前
|
机器学习/深度学习 算法 Python
【2023 华数杯全国大学生数学建模竞赛】 A题 隔热材料的结构优化控制研究 问题分析、模型建立及参考文献
本文提供了2023年华数杯全国大学生数学建模竞赛A题的详细分析、数学模型建立及参考文献,聚焦于隔热材料的结构优化控制研究,旨在解决单根隔热材料纤维的热导率测量难题,并探讨如何通过优化织物编织结构来提升隔热性能。
41 0
【2023 华数杯全国大学生数学建模竞赛】 A题 隔热材料的结构优化控制研究 问题分析、模型建立及参考文献
|
5月前
|
新能源
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】C题 中国新能源电动汽车的发展趋势 44页论文、数据及代码
本文在2023年第十三届APMCM亚太地区大学生数学建模竞赛中针对中国新能源电动汽车的发展趋势进行深入研究,建立了多元线性回归、时间序列和机理模型,分析了影响因素、预测了未来发展趋势,并探讨了对全球汽车产业及生态环境的影响,提供了相应的政策分析和市民宣传信。
187 1