基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。

研究背景

网上购物已经成为大众生活的重要组成部分。人们在电商平台上浏览商品和购物,产生了海量的用户行为数据,其中用户对商品的评论数据对商家具有重要的意义。利用好这些碎片化、非结构化的数据,将有利于企业在电商平台上的持续发展,对这部分数据进行分析,依据评论数据来优化现有产品也是大数据在企业经营中的实际应用。用户对商品的评论数据对商家来说非常重要,可以为他们提供宝贵的市场洞察和决策依据,帮助他们改进产品、制定营销策略,并提升品牌形象和竞争力

研究目的

电子商务的快速发展和互联网的普及,越来越多的消费者倾向于在网上购物。电商平台上的产品评论成为消费者了解产品的重要信息来源,对于电商企业来说,准确了解消费者对产品的情感和意见变得至关重要,产品评论的情感分析旨在通过分析评论文本中的情感倾向和内在信息,帮助电商企业和消费者做出更明智的决策,情感分析:通过机器学习和自然语言处理技术,对电商产品评论进行情感分析,判断评论者对产品的情感倾向,如积极、消极或中性。这有助于电商平台了解用户对产品的态度和情感反馈。除了情感倾向,评论文本中还蕴含着丰富的内在信息,如产品的具体特点、使用体验、性能优劣等。通过对评论文本的分析,可以提取和总结这些内在信息,为电商企业和消费者提供更全面的产品评价和购物参考。通过对评论文本的情感分析和内在信息的分析,电商企业可以了解消费者对产品的喜好和不满之处,从而改进产品质量、提升服务水平,增强竞争力。同时,企业还可以根据消费者的反馈和需求,制定更精准的营销策略,提高产品的市场竞争力。对于消费者来说,基于大数据的电商产品评论的情感分析可以为他们提供更准确和可靠的购物决策支持。通过阅读和理解其他购物者的评论,消费者可以获取产品的真实评价和体验,从而更好地选择适合自己的产品。

研究基于大数据的电商产品评论的情感分析旨在为电商企业和消费者提供更好的决策支持和购物体验,促进电商行业的发展和提升消费者满意度。

研究内容

主要针对用户在电商平台上留下的评论数据,这包括清洗、分词和去除停用词等操作,这些步骤能够减少文本噪音,提取关键信息,并为后续的分析和挖掘提供准备。在爬取评价文本的过程中,可能会面临一些问题,如无效评论、重复评论和恶意评论,需要进行相应的处理。为了准备后续的分析任务,对评价文本进行分词、去除停用词、词性标注和词干化等处理是很常见的。这些步骤可以帮助降低文本噪音,提取关键信息,并为接下来的情感分析或主题模型等任务做好准备。利用情感分析技术对处理后的文本进行情感分类,将评价划分为正面、负面或中性,有助于进一步挖掘用户对产品的态度和偏好。同时,也可以根据需要过滤掉一些特定类型的评价,如无关评价或恶意评价,以提升分析的准确性和可信度。清洗好的数据可以通过可视化技术转化为表格和图形等形式,从而更直观地进行分析。

对其进行分词、词性标注和去除停用词等文本预处理。基于预处理后的数据进行情感分析,并使用模型提取评论关键信息,了解用户的需求、意见、购买原因,以及产品的优缺点,最终提出改善产品的建议。

主要代码

from sklearn.feature\_extraction.text import TfidfVectorizer
# 将清洗后的评论数据拼接成字符串形式
corpus = \[' '.join(comment) for comment in tokenized\_comments0\]

# 使用TfidfVectorizer类进行TF-IDF转换
vectorizer = TfidfVectorizer(max\_features=1000, stop\_words=stopwords)
# vectorizer = TfidfVectorizer(max\_features=None, stop\_words=stopwords)
tfidf\_matrix = vectorizer.fit\_transform(corpus)
from sklearn.feature\_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette\_score
# 寻找最优聚类数
max\_clusters = 10
best\_score = -1
best\_clusters = 0
silhouette\_scores = \[\]

for clusters in range(2, max\_clusters + 1):
    kmeans = KMeans(n\_clusters=clusters, random\_state=42)
    kmeans.fit(tfidf\_matrix)
    cluster\_labels = kmeans.labels\_
    silhouette\_avg = silhouette\_score(tfidf\_matrix, cluster\_labels)
    silhouette\_scores.append(silhouette\_avg)

    if silhouette\_avg > best\_score:
        best\_score = silhouette\_avg
        best\_clusters = clusters



# 绘制聚类数与silhouette score的折线图
plt.plot(range(2, max\_clusters + 1), silhouette\_scores)
plt.xlabel('聚类数')
plt.ylabel('Silhouette Score')
plt.show()
AI 代码解读

效果

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
1
1
0
95
分享
相关文章
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
180 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
2月前
|
分析参数顺序对Python requests库进行POST请求的影响。
最后,尽管理论上参数顺序对POST请求没影响,但编写代码时仍然建议遵循一定的顺序和规范,比如URL总是放在第一位,随后是data或json,最后是headers,这样可以提高代码的可读性和维护性。在处理复杂的请求时,一致的参数顺序有助于调试和团队协作。
111 9
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
105 19
手把手教你抓取京东商品评论:API 接口解析与 Python 实战
京东商品评论蕴含用户对产品质量、体验和服务的真实反馈,分析这些数据有助于企业优化产品和满足用户需求。由于京东未提供官方API,需通过逆向工程获取评论数据。其主要接口为“商品评论列表接口”,支持按商品ID、评分、排序方式等参数获取评论,返回JSON格式数据,包含评论列表、摘要(如好评率)及热门标签等信息。
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
Python 原生爬虫教程:京东商品列表页面数据API
京东商品列表API是电商大数据分析的重要工具,支持开发者、商家和研究人员获取京东平台商品数据。通过关键词搜索、分类筛选、价格区间等条件,可返回多维度商品信息(如名称、价格、销量等),适用于市场调研与推荐系统开发。本文介绍其功能并提供Python请求示例。接口采用HTTP GET/POST方式,支持分页、排序等功能,满足多样化数据需求。

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问