【Leetcode刷题Python】1496.判断路径是否相交

简介: Leetcode第1496题"判断路径是否相交"的Python代码实现,通过使用字典存储方向和集合记录访问过的坐标点来检测路径是否与自身相交。

1 题目

给你一个字符串 path,其中 path[i] 的值可以是 ‘N’、‘S’、‘E’ 或者 ‘W’,分别表示向北、向南、向东、向西移动一个单位。

你从二维平面上的原点 (0, 0) 处开始出发,按 path 所指示的路径行走。

如果路径在任何位置上与自身相交,也就是走到之前已经走过的位置,请返回 true ;否则,返回 false 。
示例1

输入:path = “NES”
输出:false
解释:该路径没有在任何位置相交。

示例2

输入:path = “NESWW”
输出:true
解释:该路径经过原点两次。

2 解析

这是有一个字典的应用,将每个坐标存储起来,(x,y)作为关键字。如果重复出现坐标,就输出True

3 python实现

class Solution:
    def isPathCrossing(self, path: str) -> bool:
        direction = {
            'N':(0,1),
            'S':(0,-1),
            'E':(-1,0),
            'W':(1,0)

        }
        x,y= 0,0
        visit = set([(0,0)])
        for p in path:
            dx,dy = direction[p]
            x,y = x+dx,y+dy
            if (x,y) in visit:
                return True

            visit.add((x,y))
        return False
AI 代码解读
目录
打赏
0
2
2
0
204
分享
相关文章
|
11月前
【LeetCode 35】112.路径总和
【LeetCode 35】112.路径总和
86 0
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
250 14
|
5月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
111 4
|
5月前
|
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
123 10
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
257 1
|
11月前
【LeetCode 36】113.路径总和II
【LeetCode 36】113.路径总和II
82 0
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
241 1
Leecode 101刷题笔记之第五章:和你一起你轻松刷题(Python)
这篇文章是关于LeetCode第101章的刷题笔记,涵盖了多种排序算法的Python实现和两个中等难度的编程练习题的解法。
116 3
|
11月前
|
Python实用记录(十二):文件夹下所有文件重命名以及根据图片路径保存到新路径下保存
这篇文章介绍了如何使用Python脚本对TTK100_VOC数据集中的JPEGImages文件夹下的图片文件进行批量重命名,并将它们保存到指定的新路径。
145 0
|
11月前
|
Leecode 101刷题笔记之第四章:和你一起你轻松刷题(Python)
这篇博客是关于LeetCode上使用Python语言解决二分查找问题的刷题笔记,涵盖了从基础到进阶难度的多个题目及其解法。
96 0

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问