动手学Avalonia:基于SemanticKernel与硅基流动构建AI聊天与翻译工具

简介: 动手学Avalonia:基于SemanticKernel与硅基流动构建AI聊天与翻译工具

Avalonia是什么?

Avalonia是一个跨平台的UI框架,专为.NET开发打造,提供灵活的样式系统,支持Windows、macOS、Linux、iOS、Android及WebAssembly等多种平台。它已成熟并适合生产环境,被Schneider Electric、Unity、JetBrains和GitHub等公司采用。

许多人认为Avalonia是WPF的继任者,它为XAML开发人员提供了一种熟悉且现代的跨平台应用开发体验。尽管与WPF相似,但Avalonia并非完全复制,而包含了许多改进。

SemanticKernel是什么?

Semantic Kernel是一个SDK,它可以将大型语言模型(如OpenAI、Azure OpenAI和Hugging Face)与常规编程语言(如C#、Python和Java)整合。特殊之处在于,Semantic Kernel通过允许定义和链式调用插件,能够自动调度并组合这些AI模型。其功能是,用户可以向LLM提出个性化目标,由Semantic Kernel的规划器生成实现目标的计划,然后由系统自动执行这份计划。

硅基流动介绍

硅基流动致力于打造大模型时代的AI基础设施,通过算法、系统和硬件的协同创新,跨数量级降低大模型应用成本和开发门槛,加速AGI普惠人类。

SiliconCloud是集合主流开源大模型的一站式云服务平台,为开发者提供更快、更便宜、更全面、体验更丝滑的模型API。

目前,SiliconCloud已上架包括DeepSeek-Coder-V2、Stable Diffusion 3 Medium、Qwen2、GLM-4-9B-Chat、DeepSeek V2、SDXL、InstantID在内的多种开源大语言模型、图片生成模型,支持用户自由切换符合不同应用场景的模型。同时,SiliconCloud提供开箱即用的大模型推理加速服务,为生成式AI应用带来更高效的用户体验。

我们知道在国内使用OpenAI不太方便同时成本也比较高。现在已经有很多开源的大模型了,但是对于个人开发者而言,部署它们的一大难点是硬件资源。没有显卡,也能部署一些参数少一些的开源大模型,但是推理速度肯定是很慢的,这里选择硅基流动的原因是第一,之前注册送了42元的额度,该额度不会过期,可以一直使用,第二,试了一下推理速度真的很快,第三(也是最重要的一点)(白嫖),硅基流动宣布:SiliconCloud平台的Qwen2(7B)、GLM4(9B)、Yi1.5(9B)等顶尖开源大模型免费使用。

构建什么样的工具

最近在学习Avalonia,动手做一个小工具实现自己的需求是一个很好的开始。同时对SemanticKernel也比较感兴趣,所以选择从最基本的制作一个基于大模型的聊天应用开始。个人对大模型的一大需求就是翻译,在查看英文网站时,遇到不太理解的地方,总喜欢问大模型,将某某某翻译为中文。因此选择构建解决自己这个需求的Avalonia练手小工具。该工具的效果如下所示:

聊天

英译中

中译英

开始实践

在SemanticKernel中使用SiliconCloud提供的API服务

要解决的第一个问题就是如何在SemanticKernel中使用SiliconCloud提供的服务。

SemanticKernel中并没有告诉我们如何连接其他的大模型,但由于SiliconCloud提供的接口是与OpenAI兼容的,因此可以通过在发送请求时,改变发送请求的地址来实现。

添加OpenAIHttpClientHandler类:

public class OpenAIHttpClientHandler : HttpClientHandler
{
    protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken)
    {
        UriBuilder uriBuilder;
        switch (request.RequestUri?.LocalPath)
        {
            case "/v1/chat/completions":
                uriBuilder = new UriBuilder(request.RequestUri)
                {
                    // 这里是你要修改的 URL
                    Scheme = "https",
                    Host = "api.siliconflow.cn",
                    Path = "v1/chat/completions",
                };
                request.RequestUri = uriBuilder.Uri;
                break;
        }
    
        HttpResponseMessage response = await base.SendAsync(request, cancellationToken);
      
        return response;
    }
}

kernel通过这种方式构建:

var handler = new OpenAIHttpClientHandler();
var builder = Kernel.CreateBuilder()
.AddOpenAIChatCompletion(
   modelId: "Qwen/Qwen1.5-7B-Chat",
   apiKey: "你的apikey",
   httpClient: new HttpClient(handler));
_kernel = builder.Build();

_kernel为全局私有变量:

private Kernel _kernel;

构建页面

axaml如下所示:

<Window xmlns="https://github.com/avaloniaui"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:vm="using:AvaloniaChat.ViewModels"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:views="clr-namespace:AvaloniaChat.Views"
        mc:Ignorable="d" d:DesignWidth="800" d:DesignHeight="450"
        x:Class="AvaloniaChat.Views.MainWindow"
        Icon="/Assets/avalonia-logo.ico"
        Title="AvaloniaChat">
  <Design.DataContext>
    <!-- This only sets the DataContext for the previewer in an IDE,
         to set the actual DataContext for runtime, set the DataContext property in code (look at App.axaml.cs) -->
    <vm:MainViewModel />
  </Design.DataContext>
  <StackPanel>
    <Grid>
    <Grid.ColumnDefinitions>
        <ColumnDefinition Width="*" />
        <ColumnDefinition Width="*" />
    </Grid.ColumnDefinitions>
    <Grid Grid.Column="0">
    <StackPanel>
      <StackPanel Orientation="Horizontal">
         <Button Content="问AI" Margin="10"
               Command="{Binding AskCommand}"></Button>
         <!--<Button Content="翻译为:"></Button>-->
         <Label Content="翻译为:"
            HorizontalAlignment="Center"
            VerticalAlignment="Center"></Label>
         <ComboBox ItemsSource="{Binding Languages}"
               SelectedItem="{Binding SelectedLanguage}"
               HorizontalAlignment="Center"
               VerticalAlignment="Center"></ComboBox>
           <Button Content="翻译" Margin="10"
          Command="{Binding TranslateCommand}"></Button>
      </StackPanel>    
          <TextBox Height="300" Margin="10"
           Text="{Binding AskText}"
             TextWrapping="Wrap"
           AcceptsReturn="True"></TextBox>
    </StackPanel>    
    </Grid>
    <Grid Grid.Column="1">
       <StackPanel>
        <Button Content="AI回答" Margin="10"></Button>
          <TextBox Height="300"            
           Margin="10"
           Text="{Binding ResponseText}"
                   TextWrapping="Wrap"></TextBox>
    </StackPanel>    
    </Grid>
</Grid>   
  </StackPanel>
</Window>

界面效果如下所示:

构建ViewModel

ViewModel如下所示:

public partial class MainViewModel : ViewModelBase
{  
    private Kernel _kernel;
    [ObservableProperty]
    private string askText;
    [ObservableProperty]
    private string responseText;
    [ObservableProperty]
    private string selectedLanguage;
    public string[] Languages { get; set; }
    public MainViewModel()
    {
        var handler = new OpenAIHttpClientHandler();
        var builder = Kernel.CreateBuilder()
        .AddOpenAIChatCompletion(
           modelId: "Qwen/Qwen1.5-7B-Chat",
           apiKey: "你的apikey",
           httpClient: new HttpClient(handler));
        _kernel = builder.Build();
        AskText = " ";
        ResponseText = " ";
        SelectedLanguage = " ";
        Languages = new string[] { "中文","英文"};
    }
    [RelayCommand]
    private async Task Ask()
    {   
        if(ResponseText != "")
        {
            ResponseText = "";
        }
        await foreach (var update in _kernel.InvokePromptStreamingAsync(AskText))
        {
            ResponseText += update.ToString();         
        }     
    }
    [RelayCommand]
    private async Task Translate()
    {
        string skPrompt =   """
                            {{$input}}
                            将上面的输入翻译成{{$language}},无需任何其他内容
                            """;
    
        if (ResponseText != "")
        {
            ResponseText = "";
        }
        await foreach (var update in _kernel.InvokePromptStreamingAsync(skPrompt, new() { ["input"] = AskText,["language"] = SelectedLanguage }))
        {
            ResponseText += update.ToString();
        }
    }
}

使用流式返回

[RelayCommand]
private async Task Ask()
{   
    if(ResponseText != "")
    {
        ResponseText = "";
    }
    await foreach (var update in _kernel.InvokePromptStreamingAsync(AskText))
    {
        ResponseText += update.ToString();         
    }     
}

实现效果如下:

写提示

当我们需要翻译功能的时候,只需要翻译文本,其他的内容都不要,简易的模板如下:

string skPrompt =   """
                     {{$input}}
                     将上面的输入翻译成{{$language}},无需任何其他内容
                     """;

{{$input}}{{$language}}是模板里的参数,使用时会被替换,如下所示:

await foreach (var update in _kernel.InvokePromptStreamingAsync(skPrompt, new() { ["input"] = AskText,["language"] = SelectedLanguage }))
 {
     ResponseText += update.ToString();
 }

通过以上这几个步骤,我们就使用Avalonia制作完成一个简易的小工具了。

相关文章
|
3月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
2994 166
|
3月前
|
人工智能 安全 架构师
不只是聊天:从提示词工程看AI助手的优化策略
不只是聊天:从提示词工程看AI助手的优化策略
360 119
|
3月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
1984 120
|
3月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
3243 66
|
3月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1167 6
|
3月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
448 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
3月前
|
SQL 人工智能 机器人
AI Agent新范式:FastGPT+MCP协议实现工具增强型智能体构建
FastGPT 与 MCP 协议结合,打造工具增强型智能体新范式。MCP 如同 AI 领域的“USB-C 接口”,实现数据与工具的标准化接入。FastGPT 可调用 MCP 工具集,动态执行复杂任务,亦可作为 MCP 服务器共享能力。二者融合推动 AI 应用向协作式、高复用、易集成的下一代智能体演进。
562 0
|
3月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1682 16
构建AI智能体:一、初识AI大模型与API调用
|
3月前
|
人工智能 安全 中间件
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,推出AgentScope-Java、AI MQ、Higress网关、Nacos注册中心及可观测体系,全面开源核心技术,构建分布式多Agent架构基座,助力企业级AI应用规模化落地,推动AI原生应用进入新范式。
771 26
|
3月前
|
人工智能 自然语言处理 供应链
超越聊天:AI代理——下一代人机交互的雏形
超越聊天:AI代理——下一代人机交互的雏形
215 22