基于卡尔曼滤波的系统参数辨识matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 此程序采用卡尔曼滤波技术实现系统参数在线辨识,通过MATLAB 2022a仿真展现参数收敛过程、辨识误差,并比较不同信噪比下系统性能。卡尔曼滤波递归地结合历史估计与当前观测,优化状态估计。参数辨识中,系统参数被视为状态变量,通过迭代预测和更新步骤实现在线估计,有效处理了线性系统中的噪声影响。

1.程序功能描述
通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

```for i=1:Mc
for i=3:n-2
Xkp=FX0; % 计算状态的一步预测值
P=F
P0F'+GQG'; % 计算一步预测误差协方差
h=[-z(i-1) -z(i-2) M(i-1) M(i-2)]';% 计算观测矩阵h
K=P
h/(h'Ph+1); % 计算Kalman增益K
Xk(:,i)=Xkp+K(z(i)-h'Xkp);% 更新状态估计值Xk
Pk=(eye(4)-Kh')P; % 更新估计误差协方差Pk
P0=Pk;% 更新估计误差协方差的初值P0为Pk
X0=Xk(:,i);% 更新状态估计的初值X0为Xk(:,i)
D(:,i)=(X-Xk(:,i)).^2;% 计算估计误差并保存到D中
end
end
figure
plot(Xk(1,:))
hold on
plot(Xk(2,:))
hold on
plot(Xk(3,:))
hold on
plot(Xk(4,:))
title('参数的辨识过程')
grid on
legend('a1','a2','b1','b2');

figure
subplot(221);
plot(Xk(1,:),'r','linewidth',2)
hold on
plot(Ra1ones(size(Xk(1,:))),'b')
title('a1参数的变化过程')
grid on
subplot(222);
plot(Xk(2,:),'r','linewidth',2)
hold on
plot(Ra2
ones(size(Xk(1,:))),'b')
title('a2参数的变化过程')
grid on
subplot(223);
plot(Xk(3,:),'r','linewidth',2)
hold on
plot(Ra3ones(size(Xk(1,:))),'b')
title('b1参数的变化过程')
grid on
subplot(224);
plot(Xk(4,:),'r','linewidth',2)
hold on
plot(Ra4
ones(size(Xk(1,:))),'b')
title('b2参数的变化过程')
grid on

figure
plot(D(1,50:end))
hold on
plot(D(2,50:end))
hold on
plot(D(3,50:end))
hold on
plot(D(4,50:end))
hold on
title('估计误差的变化过程')

a1=Xk(1,end);
a2=Xk(2,end);
a3=Xk(3,end);
a4=Xk(4,end);
% 初始值设定
z2(1)=-1;
z2(2)=0;
%根据系统传递函数表达式
for i=3:n-1
z2(i)=-a1z2(i-1)-a2z2(i-2)+a3M(i-1)+a4M(i-2)+v(i-2);
end

figure;
subplot(211);
plot(z)
hold on
plot(z2)
legend('系统输出','参数辨识系统输出');

subplot(212);
plot(z-z2')
legend('参数辨识系统误差');
0008

```

4.本算法原理
卡尔曼滤波是一种广泛应用于信号处理、控制系统和数据融合等领域的高效递归滤波算法。它的主要优点是只需要利用前一时刻的估计值和当前时刻的观测值,就可以递推地计算出当前时刻的状态估计值。这使得卡尔曼滤波非常适合于实时系统和在线应用。

4.1、卡尔曼滤波的基本原理
卡尔曼滤波是一种线性、递归和最小均方误差的估计算法,它适用于线性动态系统和加性白噪声环境。卡尔曼滤波的基本方程包括状态预测方程和状态更新方程:

状态预测方程:
X(k|k-1) = A X(k-1|k-1) + B U(k) (1)

状态更新方程:
X(k|k) = X(k|k-1) + K(k) [Z(k) - H X(k|k-1)] (2)

   其中,X(k|k-1) 是根据上一时刻状态预测的本时刻状态,X(k|k) 是根据本时刻观测值更新后的状态估计,A 是状态转移矩阵,B 是控制输入矩阵,U(k) 是控制输入,Z(k) 是本时刻的观测值,H 是观测矩阵,K(k) 是卡尔曼增益。
AI 代码解读

4.2、基于卡尔曼滤波的系统参数辨识
系统参数辨识是确定系统模型参数的过程,这些参数可以描述系统的动态行为。卡尔曼滤波可以用于在线辨识系统的参数,其基本思想是将系统的参数作为状态变量,然后利用卡尔曼滤波算法进行估计。

假设我们有一个线性系统,其状态方程和观测方程可以表示为:

状态方程:

x(k+1) = Ax(k) + Bu(k) + w(k) (3)

观测方程:

y(k) = Cx(k) + Du(k) + v(k) (4)

    其中,x(k) 是状态向量,u(k) 是输入向量,y(k) 是输出向量,w(k) 和 v(k) 分别是过程噪声和观测噪声,它们被假设为零均值的高斯白噪声。AB、C 和 D 是系统的参数矩阵。

   我们可以将系统的参数矩阵作为状态变量,然后应用卡尔曼滤波算法进行估计。令系统的参数向量为 θ,则状态方程和观测方程可以改写为:
AI 代码解读

状态方程:

θ(k+1) = θ(k) + w(k) (5)

观测方程:

y(k) = X(k)θ(k) + v(k) (6)

   其中,X(k) 是由输入向量 u(k) 和状态向量 x(k) 构成的回归矩阵。这样,我们就可以利用卡尔曼滤波算法对参数向量 θ 进行在线估计。具体步骤如下:
AI 代码解读

初始化:给定初始状态估计值 θ(0|0) 和初始估计误差协方差 P(0|0)。
预测:利用状态预测方程(5)预测下一时刻的状态 θ(k+1|k)。同时,利用预测误差协方差方程预测下一时刻的估计误差协方差 P(k+1|k)。
更新:当新的观测值 y(k+1) 到达时,利用状态更新方程(2)更新状态估计值 θ(k+1|k+1)。同时,利用更新误差协方差方程更新估计误差协方差 P(k+1|k+1)。
迭代:返回步骤2,进行下一时刻的预测和更新。

目录
打赏
0
9
12
2
213
分享
相关文章
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
138 64
基于Qlearning强化学习的1DoF机械臂运动控制系统matlab仿真
本项目基于Q-learning强化学习算法,实现对单自由度机械臂的运动控制仿真。通过MATLAB 2022a平台验证算法效果,包含完整代码与仿真图像,具备良好可视化效果,适用于机器人控制与强化学习研究入门。
63 8
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
11月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
454 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
433 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
274 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问