JeecgBoot 低代码平台快速集成 Spring AI

简介: Spring 通过 Spring AI 项目正式启用了 AI(人工智能)生成提示功能。本文将带你了解如何在 Jeecg Boot 应用中集成生成式 AI,以及 Spring AI 如何与模型互动,包含 RAG 功能。

JeecgBoot 是一款基于代码生成器的低代码开发平台!前后端分离架构 SpringBoot2.x 和 3.x,SpringCloud,Ant Design Vue3,Mybatis-plus,Shiro,JWT,支持微服务。强大的代码生成器让前后端代码一键生成,实现低代码开发!JeecgBoot 引领新的低代码开发模式 (OnlineCoding-> 代码生成器 -> 手工 MERGE), 帮助解决 Java 项目 70% 的重复工作,让开发更多关注业务。既能快速提高效率,节省研发成本,同时又不失灵活性!

JeecgBoot 如何集成 Spring AI

Spring 通过 Spring AI 项目正式启用了 AI(人工智能)生成提示功能。本文将带你了解如何在 Jeecg Boot 应用中集成生成式 AI,以及 Spring AI 如何与模型互动,包含 RAG 功能。

(Retrieval Augmented Generation)检索增强生成(RAG)是一种用于将个人未经训练数据与人工智能模型集成的技术。在 RAG 工作流程中,第一步将文档数据加载到矢量数据库(例如 Redis)中。当收到用户查询时,矢量数据库会检索一组与该查询相似的文档。然后,这些文档数据充当用户问题的上下文,并与用户的查询结合使用生成响应(通常通过 LLM 模型)。

先来看一下最终效果,效果分别是 AI 互动以及 RAG 互动。

集成 Spring AI 在 Jeecg-module-demo 模块的 pom.xml 中,添加如下配置

<dependency>
  <groupid>org.springframework.ai</groupid>
  <artifactid>spring-ai-openai-spring-boot-starter</artifactid>
  <version>1.0.0-M1</version>
</dependency>
<repositories>
  <repository>
    <id>spring-milestones</id>
    <name>Spring Milestones</name>
    <url>https://repo.spring.io/milestone</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
  </repository>
  <repository>
    <id>spring-snapshots</id>
    <name>Spring Snapshots</name>
    <url>https://repo.spring.io/snapshot</url>
    <releases>
      <enabled>false</enabled>
    </releases>
  </repository>
</repositories>

添加配置 Spring AI 提供的 starter 自动配置完成了大部分工作,引入依赖后,只需要再进入如下配置即可

spring:
  ai:
    openai:
      api-key: open-ai-api-key
      base-url: 如非使用代理点,则无需更改

进行以上配置之后,官方默认没有提供 ChatClient 的 bean 注册,所以我们还需要最后一步,注册 ChatClient Bean。

@Bean
public ChatClient chatClient(ChatClient.Builder builder, VectorStore vectorStore) {
  return builder.build();
}

到这里,我们已经可以正常使用 ChatClient、ImageModel 等 API 与 OpenAI 进行互动访问了,如下:

文生文:

chatClient.prompt().user(message).call().content();

文生图:

imageModel.call(new ImagePrompt(description,
                        OpenAiImageOptions.builder().build()));

RAG:

// 向量库查询
List<document> documents = vectorStore.similaritySearch(query);
String info = "";
if (documents.size() &gt; 0) {
   info = documents.get(0).getContent();
}
// 构造系统prompt
String systemPrompt = "你的名字叫Jeecg AI助手,你的官网在http://jeecg.com,以友好的方式回应,乐于助人、快乐的态度";
// 构造用户prompt
String userPrompt = """
                给你提供一些数据参考: {info},请回答我的问题:{query}
                请你跟进数据参考与工具返回结果回复用户的请求。
                """;
// 构造提示词
Message systemMessage = new SystemMessage(systemPrompt);
PromptTemplate promptTemplate = new PromptTemplate(userPrompt);
Message userMessage = promptTemplate.createMessage(Map.of("info", info, "query", query));
Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
client.prompt(prompt).stream().content();

与 JeecgBoot 集成

经过以上两段配置,已经可以正常与 Spring AI 支持的各个大模型进行 API 调用了,不过也仅仅是停留在代码层面,使用门槛也限制在开发员人层面。

JeecgBoot 在 3.7 版本提供了 AI 对话的页面,不过现在版本的默认实现并不是通过 Spring AI 进行集成的,但是却已经完成了前后端对话通信的框架,接下来只需要使用 Spring AI 替换掉原有的大模型交互即可。

org.jeecg.modules.demo.gpt.service.impl.ChatServiceImpl 这个类的 sendMessage 方法中,将如下代码进行注释,替换上 Spring AI 的 API 调用代码即可。如下

替换成

Flux<string> contents = client.prompt()
                        .user(message)
                        .stream().content().then(“DONE”);
final String id = topicId;
        contents.subscribe(p -&gt; {
            Map<string, string> result = new HashMap&lt;&gt;();
            result.put("content", p);
            try {
                if ("DONE".equals("p")) {
                    sseEmitter.send(SseEmitter.event().id("DONE").data(p), MediaType.TEXT_EVENT_STREAM);
                } else {
                    sseEmitter.send(SseEmitter.event()
                            .id(id)
                            .data(result)
                            .reconnectTime(3000));
                }
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        });

最终效果如开头所示,如果需要将对话替换成 RAG 对话,只需要将 chatClient 调用更换即可。

JEECG
+关注
目录
打赏
0
3
3
0
26
分享
相关文章
重磅发布:VTJ.PRO 赋能若依(RuoYi)「AI + 低代码」能力,企业级开发效率跃升 300%
VTJ.PRO 与若依(RuoYi)深度集成,融合双向代码穿梭、AI智能引擎及多模态渲染技术,打造“设计即生产”新体验。支持可视化开发、AI生成代码、旧组件重构,提升企业开发效率,助力数字化转型。
201 29
AI + 低代码技术揭秘(十二):开发人员工具和可扩展性
VTJ平台提供开发工具与扩展框架,支持低代码应用的开发与拓展。包含CLI、插件系统及Uni-App集成,结合Vite、TypeScript和Vue优化开发流程。
130 62
AI + 低代码,程序员的副驾还是替代者?
AI + 低代码,程序员的副驾还是替代者?
50 0
AI + 低代码技术揭秘(五):代码生成和解析管道
VTJ系统实现Vue单文件组件(SFC)与内部DSL双向转换,通过@vtj/parser和@vtj/coder支持代码开发与可视化低代码设计无缝集成,适用于多平台代码生成与解析。
68 0
AI + 低代码技术揭秘(二):核心架构
VTJ低代码平台架构包含引擎编排层、Provider服务系统、数据模型及代码生成管道,支持设计时与运行时功能。Engine管理设计流程,Provider处理服务加载,Simulator实现组件渲染,数据模型通过事件驱动同步状态。代码生成管道可双向转换Vue组件与DSL,支持多平台适配,如Web、H5和UniApp。系统提供可视化编辑、热重载与AI集成,满足高效开发需求。
62 0
用Spring AI搭建本地RAG系统:让AI成为你的私人文档助手
想让AI帮你读懂PDF文档吗?本文教你用Spring AI和Ollama搭建一个本地RAG系统,让AI成为你的私人文档助手。无需GPU,无需云端API,只需几行代码,你的文档就能开口说话了!
基于TypeScript + Vue3 打造以AI驱动的低代码平台
VTJ低代码开发平台(LCDP)是一个支持快速创建和部署应用的多平台开发环境,采用Vue.js与NestJS技术栈,适用于Web、移动H5及UniApp场景。
182 14

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等