论文:Scaling Laws For Dense Retrieval

简介: 【8月更文挑战第5天】《密集检索的缩放定律》探究了模型大小与训练数据量对密集检索性能的影响,揭示了两者间的幂律缩放关系。此ACM SIGIR 2024论文提出使用对比熵评估模型,并展示如何利用缩放定律优化训练流程及资源分配,在预算限制下提升模型表现,为密集检索技术的发展提供了宝贵指导。论文链接:https://dl.acm.org/doi/abs/10.1145/3626772.3657743。

在信息检索领域,密集检索(Dense Retrieval)作为一种新兴的技术,已经引起了广泛的关注。最近,一篇名为《密集检索的缩放定律》的论文,深入探讨了密集检索模型的性能如何受到模型大小和训练数据量的影响。这篇论文由国际计算机协会(ACM)的SIGIR会议于2024年7月发布,为我们理解和优化密集检索模型提供了宝贵的见解。

密集检索模型,也被称为基于嵌入的检索模型,使用深度学习技术将查询和文档转化为高维向量,然后通过计算这些向量之间的相似度来检索相关文档。与传统的基于关键词匹配的检索方法相比,密集检索模型能够更好地理解查询和文档的语义信息,从而提高检索的准确性和相关性。

缩放定律是指当模型的规模(如参数数量)或训练数据量增加时,模型的性能会以可预测的方式提高。在自然语言处理领域,缩放定律已经被广泛研究,并被用于指导大型语言模型的训练。然而,在密集检索领域,缩放定律的影响尚未得到充分探索。

为了研究密集检索模型的缩放定律,论文的作者们实施了不同参数数量的密集检索模型,并使用各种规模的标注数据进行训练。他们提出了使用对比熵作为评估指标,因为与离散的排名指标相比,对比熵是连续的,能够更准确地反映模型的性能。

研究结果表明,密集检索模型的性能与模型大小和训练数据量之间存在精确的幂律缩放关系。这意味着,当模型大小和训练数据量增加时,模型的性能会以更快的速度提高。此外,研究还发现,这种缩放关系在不同的数据集和标注方法之间是一致的。

论文的作者们进一步展示了缩放定律如何帮助优化密集检索模型的训练过程。例如,他们表明,通过利用缩放定律,可以解决在预算约束下资源分配的问题。具体来说,通过预测不同模型大小和训练数据量下的预期性能,可以更好地决定如何分配计算资源,以在给定的预算内获得最佳的性能。

这篇论文的发现对理解密集检索模型的缩放效应具有重要意义,并为未来的研究提供了有意义的指导。首先,它强调了模型大小和训练数据量对密集检索模型性能的重要作用,并提供了一种预测性能的方法。其次,它展示了缩放定律如何帮助优化训练过程,并解决实际应用中的问题。最后,它为未来的研究提供了一个基础,可以进一步探索其他因素(如模型架构和优化方法)对密集检索模型性能的影响。

尽管这篇论文的发现令人鼓舞,但也有一些局限性需要注意。首先,研究结果是基于特定的数据集和评估指标得出的,可能不适用于其他场景。其次,论文没有详细讨论密集检索模型的可解释性和鲁棒性等重要问题。

论文链接:https://dl.acm.org/doi/abs/10.1145/3626772.3657743

目录
相关文章
|
5月前
|
机器学习/深度学习 网络协议 PyTorch
【文献学习】DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
本文介绍了一种新的深度复数卷积递归网络(DCCRN),用于处理语音增强问题,特别是针对低模型复杂度的实时处理。
222 5
|
5月前
|
机器学习/深度学习 PyTorch 语音技术
【文献学习】Conformer: Convolution-augmented Transformer for Speech Recognition
文章介绍了Conformer模型,这是一种结合了Transformer的自注意力机制和CNN卷积模块的混合模型,旨在提高语音识别任务的性能,通过自注意力捕捉全局上下文信息,同时利用卷积模块有效捕获局部特征。
147 0
|
8月前
|
机器学习/深度学习 缓存 数据可视化
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
166 1
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
|
8月前
|
机器学习/深度学习 自然语言处理 并行计算
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
154 1
|
8月前
|
机器学习/深度学习 JSON 自然语言处理
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
165 1
|
8月前
|
自然语言处理 PyTorch 测试技术
[RoBERTa]论文实现:RoBERTa: A Robustly Optimized BERT Pretraining Approach
[RoBERTa]论文实现:RoBERTa: A Robustly Optimized BERT Pretraining Approach
94 0
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
330 0
|
机器学习/深度学习 开发框架 数据建模
HiCLRE: A Hierarchical Contrastive Learning Framework for Distantly Supervised Relation Extraction
远程监督假设任何包含相同实体对的句子都反映了相同的关系。先前的远程监督关系抽取(DSRE)任务通常独立地关注sentence-level或bag-level去噪技术
186 0
|
机器学习/深度学习 编解码 自然语言处理
DeIT:Training data-efficient image transformers & distillation through attention论文解读
最近,基于注意力的神经网络被证明可以解决图像理解任务,如图像分类。这些高性能的vision transformer使用大量的计算资源来预训练了数亿张图像,从而限制了它们的应用。
579 0
|
机器学习/深度学习 数据挖掘
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
216 0
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification