【Tensorflow】Found unexpected keys that do not correspond to any Model output: dict_keys([‘model_outp

简介: 文章讨论了在使用Tensorflow 2.3时遇到的错误信息:"Found unexpected keys that do not correspond to any Model output: dict_keys(['model_output']). Expected: ['dense']"。这个问题通常发生在模型的输出层命名与model.fit_generator的生成器函数中返回的值的键不匹配时。

问题

环境

python 3.8
Tensorflow 2.3

使用Tensorflow2版本报错Found unexpected keys that do not correspond to any Model output: dict_keys([‘model_output’]). Expected: [‘dense’]

解决

因为Tensorflow2的model使用的最后一层需要命名比如model_ouput,则对应并且在model.fit_generator的生成器函数中返回值要定义相应的字典格式,比如{‘model_ouput’:ouput_value}。就是这两个地方要一样

在Model中代码如下

1.png


在生成器函数中

2.png

目录
相关文章
|
4月前
|
TensorFlow API 算法框架/工具
【Tensorflow】解决Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Te
文章讨论了在使用Tensorflow 2.3时遇到的一个错误:"Inputs to eager execution function cannot be Keras symbolic tensors...",这个问题通常与Tensorflow的eager execution(急切执行)模式有关,提供了三种解决这个问题的方法。
46 1
|
API 数据格式
TensorFlow2._:model.summary() Output Shape为multiple解决方法
TensorFlow2._:model.summary() Output Shape为multiple解决方法
284 0
TensorFlow2._:model.summary() Output Shape为multiple解决方法
|
TensorFlow 算法框架/工具
成功解决AttributeError: module 'tensorflow.python.keras' has no attribute 'Model'
成功解决AttributeError: module 'tensorflow.python.keras' has no attribute 'Model'
|
机器学习/深度学习 TensorFlow API
阿里云机器学习PAI EAS部署TensorFlow Model
为了帮助用户更好的实现一站式端到端的算法应用,PAI平台针对在线推理场景提供了PAI EAS(Elastic Algorithm Service)在线预测服务,支持基于异构硬件(CPU/GPU)的模型加载和数据请求的实时响应。您可以通过在线部署功能将您的模型快速部署为Restful API,然后使用HTTP请求的方式进行调用。本文通过一个示例演示:TensorFlow(SavedModel)模型的在线部署及调用。
3202 0
阿里云机器学习PAI EAS部署TensorFlow Model
|
人工智能 TensorFlow 算法框架/工具
ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model.
Introduction [Under developing,it is not working well yet.But you can just train,and run it.
1281 0
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
25天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
57 5
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
下一篇
DataWorks