Dify-生成式 AI 应用创新引擎,本地搭建以及使用

简介: Dify-生成式 AI 应用创新引擎,本地搭建以及使用

前言

Dify 是一个LLM应用开发平台开源。其绘图的界面结合了 AI工作流程、RAG 管道、代理、模型管理、可安装性功能等,让我们可以快速从原型到生产。

Dify LLMOps 平台,它拥有可视化的工作流,在开源上构建和测试功能增强的AI工作流程,支持非常全面的大模型,基本包含了市面上的主流模型,自定义的提示工程,广泛的 Rag 检索能力,还有现在强大的Agent智能体,为智能体提供了丰富的内置工具,以及可以监听日志和性能,和丰富的 Api 集成。

一 、本地搭建Dify

Dify 的官方 git 地址是 https://github.com/langgenius/dify ,我们在构建本地环境的时候,需要拉取 Dify 项目。

我们这里由于用的是 docker ,所以还需要提前准备好 docker 环境。


git clone https://github.com/langgenius/dify.git

然后进入我们刚刚拉取的 dify-main 的根目录,可以看到下面结构:

image.png

然后进入我们项目根目录的 docker 文件夹,找到 docker-compose.yaml ,执行下面命令:


docker-compose up -d

这里可能等待得时间较长,看自己网速,如果我们需要配置自己的 web 端口,由于官方项目默认的端口是 80,可会与我们本地其他项目冲突。

我们这里可以更改成自己不冲突的端口,打开 docker-compose.yaml 文件,找到里面的 nginx 配置项目,如下面所示:

image.png

将  80 端口改成我们自己的端口即可,重新执行 docker-compose up -d

image.png

看到这个界面就证明 docker 镜像已经拉取完毕,然后执行:


docker ps -a

查看所有镜像:

image.png

还可以打开我们的 docker desktop

image.png

上面这些就是我们 Dify 项目内部所需要的所有镜像,至此我们的项目环境已经搭建完毕。

二、Dify的快速构建应用

浏览器访问下面地址:(注意这里的端口一定要是你之前配置的端口,默认是 80


http://localhost:80/install

image.png

注册管理员账号。

image.png

然后输入邮箱密码登录成功。

image.png

这里我们开始快速构建dify 应用:

image.png

先添加模型:OpenAi,通义千问或者 ollama 本地模型等,如果是 ollama 本地模型,你可以闲执行 ollama list 命令查看一下自己本地所拉取的模型,如果没有你需要的,你可以重新拉取新的本地模型。

image.png

image.png

OpenAi 同理,输入自己的 key 即可:

image.png

完成模型添加后,可以看到我们的模型:

image.png

回到我们编排界面,右上角选择我们配置好的模型:

image.png

点击我们进行一系列提示词构建,然后发布,这里我添加了一个上下文文档,你也可以根据需要进行添加,我的提示词模版为:


Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{#context#}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.
{{pre_prompt}}
{{query}}

image.png

添加知识库:

image.png

文档分段和清洗:

image.png

存储到向量数据库:

image.png

知识库列表就可以看到我们创建好的文档:

image.png

一切准备就绪,点击右上角发布,然后运行一个 ChatBot 应用:

image.png

image.png

这里对我们创建的文档也能清晰的回答出来,包括具体检索到哪个知识库。

三、总结

Dify 可以说就是界面化的 LangChain,从构建到发布一个聊天程序,完全脱离了编码,并且灵活的使用了各种 api 和工具。

Dify 为我们节省了大量重复造轮子的时间,使我们能够专注于创新和业务需求,在界面上完全控制您的数据,并提供灵活的安全性。

Dify 提供了更适合生产的完整解决方案——将 Dify 视为具有精细工程设计和软件测试的脚手架系统。当然最大的好处就是,Dify 是开源的,我们也可以共同参与社区环境打造。



相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
6天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
5天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
11天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
166 32
|
21小时前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
6天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
40 13
|
1天前
|
传感器 机器学习/深度学习 人工智能
AI在自动驾驶汽车中的应用与未来展望
AI在自动驾驶汽车中的应用与未来展望
19 9
|
23小时前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
27 10
|
6天前
|
机器学习/深度学习 人工智能 边缘计算
24/7全时守护:AI视频监控技术的深度实现与应用分享
本文深入解析了AI视频监控系统在车间安全领域的技术实现与应用,涵盖多源数据接入、边缘计算、深度学习驱动的智能分析及高效预警机制,通过具体案例展示了系统的实时性、高精度和易部署特性,为工业安全管理提供了新路径。
|
11天前
|
机器学习/深度学习 人工智能 安全
AI技术在医疗领域的应用与挑战
本文将探讨AI技术在医疗领域的应用及其带来的挑战。我们将介绍AI技术如何改变医疗行业的面貌,包括提高诊断准确性、个性化治疗方案和预测疾病风险等方面。同时,我们也将讨论AI技术在医疗领域面临的挑战,如数据隐私和安全问题、缺乏标准化和监管框架以及医生和患者对AI技术的接受程度等。最后,我们将通过一个代码示例来展示如何使用AI技术进行疾病预测。
25 2