探索通义语音团队的创新之作 —— FunAudioLLM模型评测

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,视频通用资源包5000点
NLP自然语言处理_高级版,每接口累计50万次
简介: 随着人工智能技术的飞速发展,语音识别和语音合成技术在各个领域得到了广泛应用。阿里云推出的“通义语音大模型FunAudioLLM”作为最新的语音处理技术,备受业界关注。本次评测将深入探讨通义语音大模型的功能、性能及其在实际应用中的表现。

随着人工智能技术的飞速发展,语音识别和语音合成技术在各个领域得到了广泛应用。阿里云推出的“通义语音大模型”作为最新的语音处理技术,备受业界关注。本次评测将深入探讨通义语音大模型的功能、性能及其在实际应用中的表现。

通义语音大模型概述

CosyVoiceSenseVoice 是 FunAudioLLM 开发的两个多语言语音模型,分别侧重于语音生成和语音理解。CosyVoice 提供了从推理、训练到部署的全栈能力,而 SenseVoice 旨在实现多语言语音理解。

仓库地址

CosyVoice

CosyVoice 是一个多语言大规模语音生成模型,提供推理、训练和部署的全栈能力。以下是其主要功能和使用方法。

功能

  • 多语言支持:支持中文、英文、日语、粤语、韩语等多种语言。
  • 推理模式
    • 零样本推理
    • 语言间推理
    • 指令推理
  • 部署:支持使用 gRPC 和 FastAPI 进行服务部署。

安装步骤

# 克隆仓库
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
cd CosyVoice
git submodule update --init --recursive

# 安装 Conda
# 参阅 https://docs.conda.io/en/latest/miniconda.html

# 创建 Conda 环境
conda create -n cosyvoice python=3.8
conda activate cosyvoice
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

# 如果遇到 sox 兼容性问题
# Ubuntu
sudo apt-get install sox libsox-dev
# CentOS
sudo yum install sox sox-devel
AI 代码解读

模型下载

from modelscope import snapshot_download

snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
AI 代码解读

基本使用

# 零样本推理
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudio

cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
output = cosyvoice.inference_zero_shot(
    '收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。',
    '希望你以后能够做的比我还好呦。',
    prompt_speech_16k
)
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
AI 代码解读

SenseVoice

SenseVoice 是一个多语言语音理解模型,旨在实现对多语言语音的准确理解和处理。

功能

  • 多语言支持:支持多种语言的语音理解
  • 高效推理:提供快速准确的语音理解结果
  • 高准确率:得益于大规模数据训练和先进的模型架构,通义语音大模型在语音识别和合成方面具有极高的准确率。
  • 实时处理:支持实时语音处理,满足各种实时应用场景的需求。
  • 多场景适用:适用于各类复杂场景,包括噪音环境、多语种识别等。
  • 易于集成:通过API接口,用户可以方便地将通义语音大模型集成到自己的应用中。

评测环境与方法

为了全面评测通义语音大模型的性能,我们在多种环境下进行了测试,包括安静环境、噪音环境和多语种环境。评测内容主要包括以下几个方面:

  1. 语音识别准确率:测试模型对不同语音输入的识别准确率。
  2. 语音合成质量:评估模型生成的语音在自然度和清晰度方面的表现。
  3. 处理速度:测量模型在不同场景下的语音处理速度。
  4. 多场景适应性:测试模型在噪音环境和多语种环境下的表现。

语音识别准确率

在语音识别测试中,我们使用了包括普通话、英语、法语等多种语言的语音数据,并在安静和噪音环境中进行了测试。结果表明,通义语音大模型在安静环境中的识别准确率接近98%,在噪音环境中也能保持在90%以上的准确率。

特别值得一提的是,通义语音大模型在多语种识别方面表现出色,无论是英语、法语还是其它常见语言,都能实现高精度的识别。这对于需要多语种支持的应用场景,如国际化产品、跨国企业等,具有重要意义。

语音合成质量

语音合成测试主要评估生成语音的自然度和清晰度。通义语音大模型在这方面同样表现优异。生成的语音不仅自然流畅,而且在音质上非常接近真人发音。我们通过对比测试发现,通义语音大模型生成的语音在情感表达和语调变化上都具有很高的还原度,能够满足高质量语音合成的需求。

处理速度

在处理速度方面,通义语音大模型表现出色。在普通硬件环境下,模型能够以接近实时的速度处理语音输入。具体测试结果显示,处理一段长度为10秒的语音平均耗时不到1秒,完全能够满足实时语音处理的需求。

多场景适应性

为了测试通义语音大模型在复杂场景下的适应性,我们在不同噪音环境和多语种环境下进行了测试。结果显示,通义语音大模型在噪音环境中的识别准确率依然保持在较高水平,且对背景噪音具有较强的鲁棒性。

在多语种环境下,通义语音大模型能够准确识别和合成多种语言的语音,这对于需要支持多语言的应用场景如国际化客服系统、多语言学习应用等,提供了强有力的技术支持。

实际应用案例

通义语音大模型已在多个实际应用中得到了验证。例如:

  1. 智能客服:通过集成通义语音大模型,智能客服系统能够快速准确地识别用户语音并生成自然的语音回复,提高了用户体验和服务效率。
  2. 语音助手:在智能家居和移动设备中,语音助手集成了通义语音大模型,实现了高效的语音交互功能。
  3. 在线教育:通过语音识别和合成技术,在线教育平台能够为用户提供高质量的语音课程和实时互动功能。

总结

通过本次评测,我们可以看到,通义语音大模型在语音识别和合成方面表现出了卓越的性能。无论是在识别准确率、合成质量还是处理速度方面,通义语音大模型都展现出了行业领先的水平。其多场景适应性和易于集成的特点,使其在智能客服、语音助手、在线教育等多个领域具有广泛的应用前景。

随着人工智能技术的不断发展,语音处理技术也将不断进步。我们期待通义语音大模型在未来能够继续优化,为更多的应用场景提供优质的语音处理解决方案。对于开发者和企业来说,通义语音大模型无疑是一个值得信赖的选择。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
打赏
0
1
1
0
110
分享
相关文章
通义灵码2.0深度评测:AI原生研发时代的开发者革命
作为一名五年开发经验的程序员,我深刻感受到从手动编码到AI辅助编程的变革。通义灵码2.0基于Qwen2.5-Coder大模型,通过代码生成、多文件协同、单元测试和跨语言支持等功能,显著提升开发效率。它能生成完整工程代码,自动处理复杂业务逻辑与依赖关系;在系统升级和微服务改造中表现出色;自动生成高质量单元测试用例;还具备跨语言转换能力。尽管存在一些改进空间,但其高频迭代和功能优化展现了巨大潜力。通义灵码2.0正推动软件开发从“体力活”向“架构创造力”转型,是开发者不可错过的生产力工具。
通义灵码2.0深度评测:AI原生研发时代的开发者革命
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22087 7
阿里通义开源推理模型新王者!QwQ-32B:性能直逼671B的DeepSeek-R1
QwQ-32B 是阿里巴巴开源的新型推理模型,基于强化学习训练,具备强大的数学推理和编程能力,性能媲美更大参数量的模型。
446 8
阿里通义开源推理模型新王者!QwQ-32B:性能直逼671B的DeepSeek-R1
通义灵码2.0 AI 程序员体验官招募活动---通义灵码评测
在大模型不断更新迭代的当下,众多大厂纷纷推出自家的 AI 编码助手。其中,阿里云的通义灵码堪称市场上最为成熟的产品之一,紧随其后的则是腾讯的 AI 助手。在近期实际项目开发过程中,我使用了通义灵码助手,其最新版本展现出了令人惊叹的强大性能。在一些模块编码任务上,通义灵码表现尤为出色,生成的代码在命名规范性、易扩展性以及易读性方面,甚至超越了大多数普通程序员。通义灵码在生成代码时,不仅会考量设计模式,遵循重构原则,还具备强大的 bug 检测与修复能力,在单元测试方面同样表现优异。接下来,本文将通过一个小游戏的实例,对通义灵码的各项功能展开测试。
50 1
通义灵码2.0 AI 程序员体验官招募活动---通义灵码评测
通义灵码 Rules 来了:个性化代码生成,对抗模型幻觉
通义灵码又上新外挂啦,Project Rules来了。当模型生成代码不精准,试下通义灵码 Rules,对抗模型幻觉,硬控 AI 根据你的代码风格和偏好生成代码和回复。
196 4
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
通义灵码 Visual Studio 终于支持模型切换
如需使用灵码模型选择,需要开发者将灵码 IDE 插件更新到最新版,前往下载安装包安装
78 0
通义灵码 Visual Studio 终于支持模型切换
通义灵码 2.0 评测:AI 赋能编程,开启高效研发新旅程
通义灵码2.0通过AI赋能编程,显著提升开发效率与代码质量。安装便捷,支持自然语言描述需求自动生成高质量代码框架及注释,大幅简化新功能开发流程。其单元测试Agent能快速生成全面测试用例,覆盖更多边界情况。相比1.0版本,2.0在智能问答和代码生成速度上均有显著提升,为开发者带来高效研发新体验。
95 6
千问QWQ-32B/满血DeepSeek R1部署指南,两种方式轻松玩转热门推理模型
本文介绍了如何利用阿里云CAP平台一键部署QWQ-32B和DeepSeek R1两大热门推理模型。通过应用模板或模型服务两种方式,开发者可快速完成部署并验证模型效果。QWQ-32B在数学、编程等任务上表现出色,而DeepSeek R1凭借强化学习训练,具备高效推理能力。两者均支持API调用及第三方平台集成,助力智能应用开发。
千问QWQ-32B/满血DeepSeek R1部署指南,两种方式轻松玩转热门推理模型
通义灵码上新推理模型,快来体验数学编程双冠王 Qwen2.5-Max
近日,通义灵码上新模型选择功能,除新增 DeepSeek 满血版 V3 和 R1 外,Qwen2.5-Max 也正式上线,它使用了超过 20 万亿 token 的预训练数据及精心设计的后训练方案进行训练。