引言
随着人工智能技术的不断发展,语音识别与合成技术在各个领域的应用越来越广泛。FunAudioLLM作为一款新兴的语音技术框架,提供了强大的语音合成与识别能力。本次测评将围绕FunAudioLLM的性能、功能以及技术先进性等方面进行实践测试,并与国际知名语音大模型进行比较。
人类自古以来便致力于研究自身并尝试模仿,早在2000多年前的《列子·汤问》中,便记载了巧匠们创造出能言善舞的类人机器人的传说。声音中蕴含着丰富的个性特征及情感信息,而对话作为人类最自然、最亲切的交流方式,成为了连接人类与智能世界的关键纽带。
近期,阿里通义实验室推出了语音大模型项目FunAudioLLM,并将其开源,以增强人类与大型语言模型(LLMs)之间的自然语音交互体验。该框架的核心在于两大创新模型:SenseVoice和CosyVoice。
CosyVoice致力于自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。
● 多语言合成:采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。此外,CosyVoice还具备以下特点:
极速音色模拟:仅需3~10秒的原始音频,即可生成高度逼真的模拟音色,包括韵律、情感等细节。在跨语种的语音合成中,CosyVoice同样表现出色。
富文本或自然语言的细粒度控制:支持以富文本或自然语言的形式,对合成语音的情感、韵律进行细粒度的控制,使合成音频在情感表现力上得到明显提升。
SenseVoice则专注于高精度多语言语音识别、情感辨识和音频事件检测。
● 多语言识别:采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型,中文与粤语上提升50%以上。SenseVoice还具备以下特点:
富文本识别:
■ 具备优秀的情感识别能力,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
■ 支持声音事件检测能力,能够检测音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件。
推理速度:SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10秒音频推理仅耗时70毫秒,速度是Whisper-large模型的15倍。
应用场景
基于SenseVoice和CosyVoice两大模型,FunAudioLLM能够支持丰富多样的人机交互应用场景。以下是一些具体的应用示例:
- 音色情感生成的多语言语音翻译:结合CosyVoice的音色和情感控制能力,FunAudioLLM可以实现多语言语音翻译的同时,保留原始语音的音色和情感色彩,使得翻译结果更加自然、流畅。在同声传译场景中,利用CosyVoice的模拟音色与情感的多语言翻译能力,FunAudioLLM可以实现更高效、更自然的语言转换,帮助听众更好地理解演讲者的意图和情感。
- 情绪语音对话:利用SenseVoice的情感辨识能力,FunAudioLLM可以与用户进行带有情绪色彩的语音对话,提升交互的真实感和沉浸感。
互动播客:借助CosyVoice的自然语音生成能力,FunAudioLLM可以生成高质量的语音内容,用于制作互动播客节目,吸引听众参与。
有声读物:结合SenseVoice和CosyVoice的优势,FunAudioLLM可以生成富有情感表达力的有声读物,为用户提供舒适的阅读体验。
CosyVoice技术原理解析
CosyVoice是一种基于深度学习的自然语音生成模型,它致力于实现高质量、个性化的语音合成。以下是CosyVoice的主要技术原理和关键组成部分:
数据预处理:
- CosyVoice首先对大量的语音数据进行预处理,包括去噪、静音段去除、音高提取等步骤,以确保数据的质量和一致性。
特征提取:
- 从预处理后的语音数据中提取关键的声学特征,如梅尔频率倒谱系数(MFCC)、线性预测系数(LPC)等,这些特征将用于后续的模型训练。
模型架构:
- CosyVoice通常采用基于Transformer的架构,这种架构能够有效地捕捉语音信号中的长时依赖关系和复杂的声学特征。
- 在Transformer架构的基础上,CosyVoice还可能引入了一些创新的组件,如注意力机制、位置编码等,以进一步提高模型的性能。
训练目标:
- CosyVoice的训练目标是生成尽可能接近原始语音的合成语音。为了实现这一目标,模型通常采用最小化预测误差的方法,如均方误差(MSE)损失函数或交叉熵(CE)损失函数。
优化算法:
- 在模型训练过程中,采用高效的优化算法,如Adam、RMSProp等,以加快模型的收敛速度和提高训练稳定性。
后处理:
- 生成的语音信号可能需要进行一些后处理操作,如音量调整、静音段填充等,以确保最终的合成语音符合实际需求。
情感与音色控制:
- CosyVoice的一个重要特点是支持情感和音色的控制。这通常通过引入条件生成对抗网络(cGAN)或变分自编码器(VAE)等机制来实现,使得模型能够在给定情感标签或音色特征的情况下生成相应的语音。
多语言支持:
- 为了支持多语言语音合成,CosyVoice可能采用多任务学习的方法,同时训练多个语言特定的子模型,或者在一个统一的模型中嵌入多语言处理能力。
SenseVoice技术原理解析
SenseVoice是一种基于深度学习的高精度多语言语音识别和情感辨识模型。它结合了先进的声学建模和语言建模技术,以提供准确的语音转文字服务和情感分析功能。以下是SenseVoice的主要技术原理和关键组成部分:
声学预处理:
- SenseVoice首先对输入的语音信号进行预处理,包括降噪、回声消除、音量标准化等步骤,以提高语音质量并减少背景噪声的干扰。
特征提取:
- 从预处理后的语音信号中提取关键的声学特征,如梅尔频率倒谱系数(MFCC)、滤波器组输出(FBANK)等,这些特征将用于后续的模型训练。
声学建模:
- SenseVoice采用基于深度学习的声学建模方法,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)或Transformer等,以捕捉语音信号中的声学特征和时序信息。
语言建模:
- 为了提高语音识别的准确性,SenseVoice还结合了先进的语言建模技术,如n-gram模型、神经网络语言模型等,以预测单词序列的概率分布。
训练目标:
- SenseVoice的训练目标是最大化语音转文字的准确率。为了实现这一目标,模型通常采用交叉熵(CE)损失函数或其他优化目标函数。
优化算法:
- 在模型训练过程中,采用高效的优化算法,如Adam、RMSProp等,以加快模型的收敛速度和提高训练稳定性。
情感辨识:
- SenseVoice通过分析语音信号中的情感特征,如音高、语速、音色等,来实现情感辨识功能。这通常通过引入情感分类器或情感回归模型来实现。
多语言支持:
- 为了支持多语言语音识别,SenseVoice可能采用多任务学习的方法,同时训练多个语言特定的子模型,或者在一个统一的模型中嵌入多语言处理能力。
端到端框架:
- SenseVoice可能采用非自回归端到端框架,如Listen, Attend and Spell(LAS)或Transformer-Transducer(T-T)等,以实现更高效、更自然的语音识别过程。
魔搭社区体验
CosyVoice和SenseVoice相关的模型已在ModelScope上开源,同时在GitHub上发布了相应的训练、推理和微调代码,欢迎大家体验!
CosyVoice
● 开源仓库:https://github.com/FunAudioLLM/CosyVoice
● 模型地址:
■ CosyVoice-300M:https://www.modelscope.cn/models/speech_tts/CosyVoice-300M
■ CosyVoice-300M-SFT:https://www.modelscope.cn/models/speech_tts/CosyVoice-300M-SFT
■ CosyVoice-300M-Instruct:https://www.modelscope.cn/models/speech_tts/CosyVoice-300M-Instruct
● 在线体验:https://www.modelscope.cn/studios/iic/CosyVoice-300M
选择【预置语音生成】
选择预制的几个不同性别/语种的音色,输入文本合成试听效果(可尝试输入[laughter],触发彩蛋~)
选择【定制语音生成】
直接录一句话,即可用自己的音色输出更多合成文本,支持下载~
选择【高级语音生成(支持自然语言控制)】
在【预置语音生成】功能的基础上,可通过自定义情绪、语速等修饰,让合成文本的情景感更可控、生动。
SenseVoice
● 开源仓库:https://github.com/FunAudioLLM/SenseVoice
● 模型地址:https://www.modelscope.cn/models/iic/SenseVoiceSmall
● 在线体验:https://www.modelscope.cn/studios/iic/SenseVoice
测试结果与分析
性能测试结果:
FunAudioLLM在合成和识别大量语音数据时表现出良好的响应速度和准确性。与国际知名语音大模型相比,FunAudioLLM在处理速度上略有优势,同时在识别准确性上达到了相近的水平。功能测试结果:
FunAudioLLM提供了丰富的功能选项,包括自定义语音合成、语音识别、语音翻译等。测试过程中发现,各项功能均能正常使用,且操作界面友好,易于上手。技术先进性测试结果:
FunAudioLLM采用了先进的深度学习技术,如Transformer模型、自注意力机制等,保证了其在语音合成与识别方面的优异表现。与国际领先水平的语音大模型相比,FunAudioLLM在算法优化和模型结构上具有一定的竞争力。
结论
通过本次测评,我们发现FunAudioLLM在性能、功能和技术先进性等方面均表现出色。其响应速度快、识别准确率高,同时提供了丰富的实用功能,易于上手。在技术架构和算法优化方面,FunAudioLLM也展现出了较高的水平。然而,作为一款新兴的语音技术框架,FunAudioLLM仍有进一步提升的空间,期待其在未来能够取得更多的突破和创新。
致谢
感谢FunAudio团队为我们提供了这样一个优秀的语音技术框架。