Redis 与 Scrapy:无缝集成的分布式爬虫技术

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Redis 与 Scrapy:无缝集成的分布式爬虫技术
  1. 分布式爬虫的概念
    分布式爬虫系统通过将任务分配给多个爬虫节点,利用集群的计算能力来提高数据抓取的效率。这种方式不仅可以提高爬取速度,还可以在单个节点发生故障时,通过其他节点继续完成任务,从而提高系统的稳定性和可靠性。
  2. Scrapy 简介
    Scrapy 是一个用于快速抓取 web 数据的 Python 框架。它提供了一个异步处理的架构,可以轻松地处理大规模数据抓取任务。Scrapy 的主要特点包括:
    ● 异步处理:利用 Twisted 异步网络库,Scrapy 可以同时处理多个请求,提高数据抓取的效率。
    ● 强大的选择器:Scrapy 使用 lxml 或 cssselect 作为选择器,可以方便地从 HTML/XML 页面中提取数据。
    ● 中间件支持:Scrapy 支持下载中间件和蜘蛛中间件,允许开发者在请求和响应处理过程中插入自定义逻辑。
    ● 扩展性:Scrapy 可以轻松地与各种存储后端(如数据库、文件系统)集成。
  3. Redis 简介
    Redis 是一个开源的内存数据结构存储系统,用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如字符串、哈希、列表、集合等。Redis 的主要特点包括:
    ● 高性能:Redis 的数据存储在内存中,读写速度快。
    ● 高可用性:通过主从复制和哨兵系统,Redis 可以提供高可用性。
    ● 数据持久化:Redis 支持 RDB 和 AOF 两种持久化方式,确保数据的安全性。
    ● 丰富的数据类型:Redis 支持字符串、列表、集合、有序集合、散列等多种数据类型。
  4. Scrapy-Redis 架构
    Scrapy-Redis 是 Scrapy 与 Redis 的集成库,它将 Scrapy 的爬虫任务和结果存储在 Redis 中。这种架构的主要优势包括:
    ● 分布式处理:通过 Redis,Scrapy-Redis 可以将爬虫任务分配到多个爬虫节点,实现分布式处理。
    ● 去重:利用 Redis 的集合数据类型,Scrapy-Redis 可以轻松实现 URL 的去重。
    ● 任务队列:Redis 作为任务队列,可以存储待抓取的 URL,避免重复抓取。
  5. Scrapy-Redis 组件
    Scrapy-Redis 架构主要由以下几个组件构成:
    ● Redis 服务器:作为数据存储和任务队列的后端。
    ● Scrapy 爬虫:执行实际的数据抓取任务。
    ● Scrapy-Redis 扩展:提供 Scrapy 与 Redis 之间的集成功能。
  6. 实现 Scrapy-Redis 架构
    以下是实现 Scrapy-Redis 架构的基本步骤和示例代码:
    首先,需要安装 Scrapy 和 Scrapy-Redis。可以通过 pip 安装.
    在 Scrapy 项目的 settings.py 文件中。
    接下来,定义一个 Scrapy 爬虫,并使用 Redis 存储爬取结果。
    ```import scrapy
    from scrapy import Request
    from scrapy.utils.project import get_project_settings
    from scrapy.exceptions import NotConfigured
    from twisted.internet import reactor
    from twisted.internet.error import TimeoutError
    from twisted.internet.defer import inlineCallbacks
    from scrapy.http import HtmlResponse
    from scrapy.utils.response import response_status_message

from scrapy_redis.spiders import RedisSpider

class ProxyMiddleware(object):
def init(self, proxyHost, proxyPort, proxyUser, proxyPass):
self.proxyHost = proxyHost
self.proxyPort = proxyPort
self.proxyUser = proxyUser
self.proxyPass = proxyPass

@classmethod
def from_crawler(cls, crawler):
    settings = crawler.settings
    return cls(
        proxyHost=settings.get('PROXY_HOST'),
        proxyPort=settings.get('PROXY_PORT'),
        proxyUser=settings.get('PROXY_USER'),
        proxyPass=settings.get('PROXY_PASS')
    )

def process_request(self, request, spider):
    proxy = f"{self.proxyUser}:{self.proxyPass}@{self.proxyHost}:{self.proxyPort}"
    request.meta['proxy'] = proxy

class MySpider(RedisSpider):
name = 'example'
redis_key = 'example:start_urls'

def start_requests(self):
    yield scrapy.Request(url=self.start_urls[0], callback=self.parse)

def parse(self, response):
    for href in response.css('a::attr(href)').getall():
        yield response.follow(href, self.parse_item)

def parse_item(self, response):
    item = {
        'domain_id': response.url,
        'domain_name': response.url,
    }
    yield item

settings.py

ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300,
}

DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'

SCHEDULER = 'scrapy_redis.scheduler.Scheduler'

SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderQueue'
SCHEDULER_QUEUE_LIMIT = 10000

REDIS_URL = 'redis://localhost:6379'

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.ProxyMiddleware': 100,
}

PROXY_HOST = "www.16yun.cn"
PROXY_PORT = "5445"
PROXY_USER = "16QMSOML"
PROXY_PASS = "280651"
```
7.结论
Scrapy-Redis 架构通过将 Scrapy 的爬虫任务和结果存储在 Redis 中,实现了高效的数据抓取。这种架构不仅提高了数据抓取的效率,还增强了系统的可扩展性和稳定性。通过合理的配置和优化,可以进一步发挥 Scrapy-Redis 架构的优势,满足大规模数据抓取的需求。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
存储 缓存 NoSQL
深入理解Django与Redis的集成实践
深入理解Django与Redis的集成实践
54 0
|
16天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
1月前
|
数据采集 中间件 开发者
Scrapy爬虫框架-自定义中间件
Scrapy爬虫框架-自定义中间件
|
1月前
|
数据采集 中间件 Python
Scrapy爬虫框架-通过Cookies模拟自动登录
Scrapy爬虫框架-通过Cookies模拟自动登录
|
17天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
39 4
|
16天前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略
|
18天前
|
监控 算法 网络协议
|
22天前
|
移动开发 NoSQL 网络协议
Redis 管道技术
10月更文挑战第21天
16 3
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
1月前
|
缓存 监控 负载均衡
如何解决Redis热点Key问题?技术干货分享
【10月更文挑战第2天】在Redis的使用过程中,热点Key问题是一个常见的性能瓶颈。热点Key指的是那些被频繁访问的Key,它们可能导致Redis服务器的负载不均衡,进而影响整体性能。本文将深入探讨热点Key问题的成因、影响以及多种解决方案,帮助读者在实际工作中有效应对这一挑战。
48 3

热门文章

最新文章