人工智能平台PAI操作报错合集之在分布式训练过程中遇到报错,是什么原因

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI flink运行一段时间后jobManager里经常会报这个错是什么原因?

机器学习PAI flink运行一段时间后jobManager里经常会报Connection reset by peer这个错是什么原因?



参考答案:

可能是cpu或者内存超了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586588



问题二:机器学习PAI本地执行web ui的时候报这个错,能帮忙看看是什么原因吗?还是我配置有问题

机器学习PAI本地执行web ui的时候报这个错,能帮忙看看是什么原因吗?还是我配置有问题



参考答案:

根据您提供的错误信息,问题可能出在以下几个方面:

  1. 网络连接问题:请确保您的本地计算机可以访问PAI的Web UI。检查您的网络设置和防火墙配置,确保没有阻止您访问8080端口。
  2. 权限问题:请确保您具有足够的权限来执行机器学习任务。如果您没有足够的权限,请联系您的系统管理员或PAI管理员以获取帮助。
  3. 资源限制:请检查您的计算机是否有足够的资源(如内存、CPU等)来执行机器学习任务。如果资源不足,您可能需要升级您的硬件或优化您的代码以减少资源使用。
  4. 代码错误:请检查您的代码是否存在错误。您可以查看PAI Web UI中的日志以获取更多关于错误的详细信息。
  5. PAI版本问题:请确保您使用的PAI版本与您的代码兼容。如果您使用的是较旧的版本,您可能需要升级到最新版本。

建议您尝试以上方法解决问题,如果问题仍然存在,请查阅PAI官方文档或联系PAI技术支持以获取更多帮助。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586587



问题三:机器学习PAI的EasyRec在使用DLC做分布式训练时得到如下错误怎么解决?

机器学习PAI的EasyRec在使用DLC做分布式训练时得到如下错误怎么解决?



参考答案:

oss挂载写events文件有问题,只能close的时候才会创建这个文件,可以先尝试用nas走通看看吗?我们再看怎么解决DLC挂载oss跑EasyRec的问题,主要是oss本身不支持标准的POSIX文件接口



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586363



问题四:安装了最新版本机器学习PAI的easy_rec,为啥调用的时候,就会这样啊?

安装了最新版本机器学习PAI的easy_rec,为啥调用的时候,就会这样啊?>>> import easy_rec as ec

Traceback (most recent call last):

File "", line 1, in

File "/Users/caonannan/miniforge3/envs/tf/lib/python3.9/site-packages/easy_rec-0.7.4-py3.9.egg/easy_rec/init.py", line 37, in

from easy_rec.python.inference.predictor import Predictor # isort:skip # noqa: E402

File "/Users/caonannan/miniforge3/envs/tf/lib/python3.9/site-packages/easy_rec-0.7.4-py3.9.egg/easy_rec/python/inference/predictor.py", line 23, in

from easy_rec.python.protos.dataset_pb2 import DatasetConfig

ModuleNotFoundError: No module named 'easy_rec.python.protos.dataset_pb2'



参考答案:

原因是没有运行初始化脚本。请执行sh scripts/init.sh来解决该问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586356



问题五:PAI报这个错是为什么?Error info is "log_vml_cpu" not implem

PAI报这个错是为什么?Error info is "log_vml_cpu" not implemented for 'Half'



参考答案:

重启一下webui 再做推理哈



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585734



问题六:PAI有资源却报错,无法提交怎么解决?

PAI有资源却报错,无法提交怎么解决?



参考答案:

因为资源库存实时更新的,所以可能创建时候会失败,麻烦您换一下region或者刷新尝试一下呢



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585733

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
24天前
|
Java 调度 Maven
新一代 Cron-Job 分布式任务调度平台 正式发布!
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
114 12
|
23天前
|
Java 关系型数据库 MySQL
新一代 Cron-Job分布式任务调度平台 部署指南
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
73 17
|
2天前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
11 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
11天前
|
测试技术 调度
新一代 Cron-Job分布式调度平台,v1.0.5版本发布!
增加标签路由能力和多项功能优化!其中Tag标签路由的功能,测试环境多迭代场景下,可通过给任务配置Tag标签,实现任务路由到不同的执行器上。
18 0
|
5月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
3月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
127 27
|
2月前
|
人工智能 智能设计 数据处理

热门文章

最新文章

相关产品

  • 人工智能平台 PAI