人工智能平台PAI使用问题之如何实现数据在MaxCompute中是永久的

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI中FeatureStore支持特征transform吗?

机器学习PAI中FeatureStore支持特征transform吗?比如频次这个特征,我需要对它做一些映射处理逻辑,FeatureStore提供这种Transformer逻辑吗?



参考答案:

这个处理没必要在这里做,目前支持训练特征的时候处理,推荐使用EasyRec,在config配置上boundary即可应用这个分桶操作。另外easyrec还支持多种处理方式,推荐看一下文档https://easyrec.readthedocs.io/en/latest/

easyrec代码也是开源的:https://github.com/alibaba/EasyRec

后续我们会在feature store推出特征生产的功能应该也能满足你的这些需求。你如果现在就要用的话,可以直接用easyrec ,



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598272



问题二:机器学习PAI中MaxCompute有方法成為永久的嗎?

机器学习PAI中MaxCompute作為Store是有Life time days, 有方法成為永久的嗎?



参考答案:

这个我找了一下,要设置的话,可以参考下这个文档 https://help.aliyun.com/zh/maxcompute/user-guide/lifecycle-management-operations?spm=a2c4g.11186623.0.i5



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598271



问题三:机器学习PAI有沒有非在線類的ML案例該如何運用FeatureStore嗎?

机器学习PAI有沒有非在線類的ML案例該如何運用FeatureStore嗎?

比方說, 我想用XGBoost訓練一個簡單的離線Classifier, 所以我的data不用real time,也不用online,有案例分享嗎?



参考答案:

https://help.aliyun.com/zh/pai/use-cases/manage-features-by-using-featurestore-in-a-recommendation-system?spm=a2c4g.11186623.0.i20#b6bbc1707dm2kLau 文档在这里



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598270



问题四:机器学习PAI有没有安装pyalink卡在qtconsole 4.0上的?

机器学习PAI有没有安装pyalink卡在qtconsole 4.0上的?



参考答案:

机器学习PAI(Platform AI)的安装过程中,如果在安装pyalink时卡在了qtconsole 4.0上,可能是由于以下原因:

  1. 网络连接问题:请确保您的计算机可以正常访问互联网,并且没有任何防火墙或代理服务器阻止了安装进程。您可以尝试使用其他网络连接或者检查防火墙设置。
  2. 下载文件完整性:如果您之前已经下载过qtconsole-4.0.0的安装包,可以尝试重新下载安装包并再次运行安装程序,确保下载的文件完整且未损坏。
  3. 依赖项冲突:某些软件包可能依赖于其他软件包或库。如果这些依赖项无法满足,安装过程可能会失败。您可以尝试查看安装日志以获取更多详细信息,并解决任何依赖项冲突。
  4. 操作系统兼容性:确认您的操作系统与pyalink的要求兼容。有时候,特定版本的操作系统可能需要额外的配置或补丁才能成功安装软件。
  5. 机器资源不足:如果机器的CPU、内存或磁盘空间不足,也可能会导致安装过程卡住。
  6. 安装包损坏:如果安装包损坏,也可能会导致安装过程卡住。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/597742



问题五:机器学习PAI数据从max compute 同步到线上如hologres,帮忙,看看?

机器学习PAI数据从max compute 同步到线上如hologres,可以在页面上面执行了。也可以部署到Dataworks 中去调度?



参考答案:

楼主你好,阿里云机器学习PAI平台可以将数据从MaxCompute同步到Hologres,并且可以在PAI平台的页面上执行该操作。

而且你还可以将这个数据同步任务部署到阿里云DataWorks中进行调度,因为DataWorks是一个全面的数据集成和数据开发平台,可以帮助你实现数据的ETL、任务调度和工作流程管理等功能,通过在DataWorks中配置相关任务,你可以实现自动化地将数据从MaxCompute同步到Hologres,并按照需求进行调度和管理。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/597625

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
18天前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
154 1
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
25天前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
100 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
1月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
170 3
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
1月前
|
人工智能 算法 搜索推荐
探索人工智能与大数据的融合之道####
本文深入探讨了人工智能(AI)与大数据之间的紧密联系与相互促进的关系,揭示了二者如何共同推动科技进步与产业升级。在信息爆炸的时代背景下,大数据为AI提供了丰富的学习材料,而AI则赋予了大数据分析前所未有的深度与效率。通过具体案例分析,本文阐述了这一融合技术如何在医疗健康、智慧城市、金融科技等多个领域展现出巨大潜力,并对未来发展趋势进行了展望,强调了持续创新与伦理考量的重要性。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与大数据的融合之美####
【10月更文挑战第29天】 身处信息技术飞速发展的时代,人工智能与大数据如同两颗璀璨的星辰,在科技的夜空中交相辉映,共同推动着社会进步与变革的浪潮。本文旨在揭开AI与大数据深度融合的神秘面纱,探讨这一融合如何引领技术前沿,激发创新活力,并展望其在未来世界中的无限可能。通过深入浅出的解析,展现技术背后的逻辑与魅力,邀请读者一同踏上这场科技与智慧的探索之旅。 ####
86 2
|
1月前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
510 0
|
25天前
|
数据采集 机器学习/深度学习 人工智能
探索人工智能与大数据的融合之路####
本文将深入探讨人工智能(AI)与大数据之间的共生关系,揭示二者如何相互促进,共同推动技术边界的拓展。不同于传统摘要的概述形式,本部分将以一个生动的比喻开篇:如果把大数据比作广阔无垠的数字海洋,那么人工智能就是航行其间的智能航船,两者相辅相成,缺一不可。随后,简述文章将从数据采集、处理、分析到决策应用的全流程中,详细阐述AI如何借助大数据的力量实现自我迭代与优化,以及大数据如何在AI算法的驱动下释放出前所未有的价值。最后,预告文章还将探讨当前面临的挑战与未来趋势,为读者勾勒一幅AI与大数据融合发展的宏伟蓝图。 ####

相关产品

  • 人工智能平台 PAI