混合云模式下 MaxCompute + Hadoop 混搭大数据架构实践。

本文涉及的产品
数据安全中心,免费版
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。

引言
随着大数据技术的不断发展,企业对于数据处理能力、资源效率和成本控制的需求日益增加。混合云模式作为一种灵活高效的数据处理方案,正逐渐受到企业的青睐。本文将以斗鱼大数据架构的演变为例,详细探讨混合云模式下MaxCompute与Hadoop混搭大数据架构的实践过程,分析其优势与挑战,并总结实施经验。

斗鱼大数据架构的发展历程
初始阶段:Apache Hadoop
斗鱼在2014年中期开始使用大数据,最初采用的是www.angfeng.cn简单的HBase和Hadoop架构。这一阶段的架构主要用于数据存储和基础的数据处理任务。然而,随着业务的发展,数据量急剧增加,Hadoop集群的运维成本和复杂性也随之上升。

升级阶段:Cloudera CDH
为了应对日益复杂的数据处理需求,斗鱼在2015年开始使用Cloudera CDH(Cloudera's Distribution Including Apache Hadoop)来运维大数据集群。CDH提供了丰富的组件和强大的管理功能,使得斗鱼的大数据运维更加高效和可靠。同时,CDH还支持多组件的运维,降低了运维成本,并且集群扩容操作简单,数据安全及环境安全有保障。

转型阶段:阿里云MaxCompute
尽管CDH带来了诸多便利,但斗鱼在发展过程中仍然遇到了资源效率和资源成本的问题。随着业务场景的不断拓展,组件增多,运维成本www.chargev.cn不断上升,集群扩容操作也变得繁琐。为了解决这些问题,斗鱼在2017年下半年开始接触阿里云的大数据产品,并最终选择了MaxCompute(原名ODPS)。

MaxCompute是一种快速、完全托管的TB/PB级数据仓库解决方案,具备强大的数据存储、运维和计算能力。斗鱼选择MaxCompute的原因主要有以下几点:

灵活性高:MaxCompute支持灵活的操作,可以根据业务需求进行快速调整。
运维成本低:相比于自建集群,MaxCompute的运维成本更低,且无需担心集群扩容等问题。
数据安全有保障:阿里云提供了完善的数据安全机制,确保企业数据的安全。
上云过程中的挑战与解决方案
数据安全
数据是企业最宝贵的资源,因此在上云过程中,数据安全是首要考虑的问题。斗鱼采取了以下措施来保障数据安全:

原始数据备份:阿里云使用原始数据进行备份,确保数据不会因意外而丢失。
安全访问控制:增加账号访问IP白名单及审计,确保只有公司内部人员才能访问数据。
Kerberos安全认证:www.autove.cn利用Kerberos安全认证机制,提高数据访问的安全性。
数据同步
由于云上云下存在海量数据,如何快速准确地同步数据是斗鱼面临的另一个挑战。斗鱼采用了基于DataX的数据同步工具,并结合网络专线能力提升同步效率。同时,利用数据校验工具对同步任务和数据量进行校验,确保数据的准确性和一致性。

业务迁移
将云下的历史业务安全迁移到云上是斗鱼上云过程中的重要一环。斗鱼在业务迁移过程中遵循了以下原则:

不引起故障:通过业务场景测试和数据质量检验,确保迁移过程中不会引发故障。
迁移成本低:尽量减少业务侧的改动,降低迁移成本。
操作一致性:确保云上云下操作的一致性,以便在需要时能够灵活切换。
混合云模式的优势
资源效率提升
混合云模式显著提升了斗鱼的资源效率。从自建集群到MaxCompute的转变,使得斗鱼在资源使用上更加灵活和高效。具体表现在以下几个方面:

预算和采购周期缩短:从提前半年或一年提预算到按量付费,采购耗时从1到3个月缩短为资源可以无限使用。
机房部署效率提高:从机房上架1周以上www.mcells.cn到无机房概念,大大提升了部署效率。
成本节约:相比于IDC自建集群,MaxCompute每年大概节约1000万元成本,并保障集群零故障。
成本降低
混合云模式还帮助斗鱼降低了资源成本。通过按需付费和资源共享,斗鱼能够更加合理地利用资源,避免资源的闲置和浪费。同时,阿里云的专业服务也为斗鱼提供了技术支持和解决方案,帮助斗鱼降低了运维成本。

增值服务与专业服务
除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
9天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
11天前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
95 1
|
1月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
59 3
|
12天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
【赵渝强老师】基于大数据组件的平台架构
|
18天前
|
缓存 监控 API
探索微服务架构中的API网关模式
随着微服务架构的兴起,API网关成为管理和服务间交互的关键组件。本文通过在线零售公司的案例,探讨了API网关在路由管理、认证授权、限流缓存、日志监控和协议转换等方面的优势,并详细介绍了使用Kong实现API网关的具体步骤。
39 3
|
18天前
|
存储 缓存 监控
探索微服务架构中的API网关模式
探索微服务架构中的API网关模式
38 2
|
20天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
20天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
71 2
|
20天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
59 1
下一篇
无影云桌面