YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍
摘要
我们提出了卷积块注意力模块(Convolutional Block Attention Module,CBAM),这是一种简单但有效的用于前馈卷积神经网络的注意力模块。给定一个中间特征图,我们的模块依次推断沿两个独立维度(通道和空间)的注意力图,然后将注意力图与输入特征图相乘以进行自适应特征优化。由于CBAM是一个轻量且通用的模块,可以无缝地集成到任何卷积神经网络(CNN)架构中,且开销可以忽略不计,并能够与基础CNN进行端到端训练。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上进行广泛的实验验证了CBAM。我们的实验表明,在各种模型中,分类和检测性能均有一致的提升,证明了CBAM的广泛适用性。代码和模型将公开可用。
文章链接
论文地址:论文地址
代码地址:代码地址
参考代码: yolov8源代码中的ultralytics.nn.modules.conv.CBAM
基本原理
Convolutional Block Attention Module(CBAM)是一种针对卷积神经网络(CNN)设计的新型注意力机制,旨在增强其在各种计算机视觉任务中的性能,如图像分类和目标检测。CBAM依次沿着通道和空间两个独立维度推断注意力图,然后将这些图结合起来,自适应地优化输入特征图。
通道注意力模块:CBAM中的通道注意力机制专注于建模特征图中不同通道之间的相互关系。它学习为每个通道分配不同的重要性权重,通过捕捉通道间的关系,有助于网络强调信息丰富的通道,同时抑制不太相关的通道,从而改善特征表示。
空间注意力模块:CBAM中的空间注意力机制旨在捕捉特征图中每个通道内的空间依赖关系。通过分析不同位置之间的空间关系,空间注意力模块学习突出重要的空间区域,同时抑制不相关的区域。这使网络能够专注于相关的空间位置,以更好地提取特征。
以下为 CBAM (Convolutional Block Attention Module) 的架构
从架构来看,其实蛮像 BAM(Bottleneck Attention Module),一样有 Channel attention 和 Spatial attention 的模块在里面,而 CBAM (Convolutional Block Attention Module) 的流程如下:
- 输入特征 通过 Channel Attention 后得到 Mc(F),Mc(F) 与 F(input feature) 做 Element-wise Product 得到 F’
- F’ 通过空间注意力 后得到 Ms(F),Ms(F) 与 F’(input feature) 做 Element-wise Product 得到 F’’
最终的输出为 F’’ = Ms(F’) ⊗F’ , F’ = Mc(F) ⊗ F (Input feature) 可以用以下公式来表示
核心代码
class ChannelAttention(nn.Module):
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
def __init__(self, channels: int) -> None:
"""Initializes the class and sets the basic configurations and instance variables required."""
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
self.act = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
return x * self.act(self.fc(self.pool(x)))
class SpatialAttention(nn.Module):
"""Spatial-attention module."""
def __init__(self, kernel_size=7):
"""Initialize Spatial-attention module with kernel size argument."""
super().__init__()
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.act = nn.Sigmoid()
def forward(self, x):
"""Apply channel and spatial attention on input for feature recalibration."""
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
"""Convolutional Block Attention Module."""
def __init__(self, c1, kernel_size=7):
"""Initialize CBAM with given input channel (c1) and kernel size."""
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
"""Applies the forward pass through C1 module."""
return self.spatial_attention(self.channel_attention(x))
task与yaml配置
详见:https://blog.csdn.net/shangyanaf/article/details/139950898