【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构

简介: 【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

摘要

摘要——我们提出了一种硬件高效的卷积神经网络架构,具有类似 RepVGG 的架构。FLOPs 或参数是传统的评估网络效率的指标,但它们对硬件(包括计算能力和内存带宽)不敏感。因此,如何设计一个神经网络以有效利用硬件的计算能力和内存带宽是一个关键问题。本文提出了一种设计硬件感知神经网络的方法。基于这种方法,我们设计了 EfficientRep 系列卷积网络,这些网络对高计算硬件(如 GPU)友好,并应用于 YOLOv6 目标检测框架。YOLOv6 已发布了 v1 和 v2 版本中的 YOLOv6N/YOLOv6S/YOLOv6M/YOLOv6L 模型。我们的 YOLOv6 代码可在 https://github.com/meituan/YOLOv6 获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

EfficientRep是一种高效的RepVGG风格卷积神经网络架构,旨在优化硬件的计算能力和内存带宽利用。该架构采用RepVGG风格的卷积结构,具有3x3卷积核,通过Winograd算法在GPU或CPU上进行高度优化。在训练状态下,EfficientRep结合了3x3分支、1x1分支和恒等映射,以确保训练期间的准确性。在推理状态下,通过重新参数化,多分支结构转换为单分支的3x3卷积。EfficientRep主要包括EfficientRep骨干网络和Rep-PAN颈部,这些结构对GPU友好,并应用于YOLOv6检测框架(YOLOv6-v1)[T3]。

在YOLOv6-v1中,EfficientRep骨干网络和Rep-PAN颈部的设计使得单GPU设备上的训练和推理速度得到提升。然而,当YOLOv6-v1扩展到中等规模时,推理速度下降过快,准确性也无法与CSP风格的YOLO系列相竞争。因此,为了在大型模型中实现更好的准确性和速度平衡,研究人员探索了多路径结构等新颖设计[T6]。

EfficientRep将在backbone中stride=2的卷积层换成了stride=2的RepConv层。并且也将CSP-Block修改为了RepBlock。

image-20240609095256534

核心代码


# 定义 RepBlock 类,继承自 nn.Module
class RepBlock(nn.Module):
    '''
        RepBlock 是一个包含多个 RepVGGBlock 的阶段块
    '''
    def __init__(self, in_channels, out_channels, n=1, isTrue=None):
        super().__init__()
        self.conv1 = RepVGGBlock(in_channels, out_channels)
        self.block = nn.Sequential(*(RepVGGBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None

    # 前向传播函数
    def forward(self, x):
        x = self.conv1(x)
        if self.block is not None:
            x = self.block(x)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139558834

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
272 1
|
7天前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
33 5
|
1月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
76 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
111 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
2月前
|
边缘计算 人工智能 安全
5G 核心网络 (5GC) 与 4G 核心网:架构变革,赋能未来
5G 核心网络 (5GC) 与 4G 核心网:架构变革,赋能未来
134 6
|
2月前
|
存储 监控 物联网
蜂窝网络基础架构详解:从基站到核心网
蜂窝网络基础架构详解:从基站到核心网
219 9
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
112 0
|
2月前
|
编解码 人工智能 文件存储
卷积神经网络架构:EfficientNet结构的特点
EfficientNet是一种高效的卷积神经网络架构,它通过系统化的方法来提升模型的性能和效率。
57 1
|
2月前
|
传感器 监控 物联网
无线传感器网络的基本架构及其广泛应用
无线传感器网络的基本架构及其广泛应用
228 0
|
3月前
|
网络协议 安全 网络性能优化
OSI 模型详解:网络通信的七层架构
【8月更文挑战第31天】
672 0

热门文章

最新文章