Large Enough!Mistral Large 2开源!魔搭推理、微调最佳实战教程来啦!

简介: Mistral宣布推出新一代旗舰机型 Mistral Large 2。与前代产品相比,Mistral Large 2 在代码生成、数学和推理方面的能力显著增强。它还提供了更强大的多语言支持和高级函数调用功能。

引言

Mistral宣布推出新一代旗舰机型 Mistral Large 2。与前代产品相比,Mistral Large 2 在代码生成、数学和推理方面的能力显著增强。它还提供了更强大的多语言支持和高级函数调用功能。

Mistral Large 2 具有 128k 上下文窗口,支持法语、德语、西班牙语、意大利语、葡萄牙语、阿拉伯语、印地语、俄语、中文、日语和韩语等数十种语言,以及 Python、Java、C、C++、JavaScript 和 Bash 等 80 多种编码语言。

Mistral Large 2 在评估指标上在性能/服务成本方面树立了新标杆。特别是在 MMLU 上,预训练版本实现了 84.0% 的准确率,并在开放模型的性能/成本树立了新标杆。

image.png

模型链接和下载

模型链接:

https://modelscope.cn/models/LLM-Research/Mistral-Large-Instruct-2407

模型下载:

from modelscope import snapshot_download
# 可仅下载model safetensor文件
model_dir = snapshot_download('LLM-Research/Mistral-Large-Instruct-2407', ignore_file_pattern=['^consolidated'])

模型license: Mistral Research License, 仅允许用于在学术和非商用场景的使用

模型推理

升级transformers版本

pip install git+https://github.com/huggingface/transformers.git

推理代码:

from transformers import pipeline
from modelscope import snapshot_download
model_dir=snapshot_download('LLM-Research/Mistral-Large-Instruct-2407', ignore_file_pattern=['^consolidated'])
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model=model_dir)
chatbot(messages)

模型效果

数学:最近很火的比大小

中文错了:

image.png

英文对了:

image.png

代码:写一个24点

中文错了:

image.png

image.png

英文对了:

image.png

image.png

常识问答,城市名:

中文:

image.png

英文:

image.png

模型微调

我们介绍使用ms-swift对mistral-large-instruct-2407进行自我认知微调,并对微调前后的模型进行推理。swift是魔搭社区官方提供的LLM工具箱,支持300+大语言模型和50+多模态大模型的微调、推理、量化、评估和部署。

swift开源地址:

https://github.com/modelscope/swift

自我认知数据集:

https://modelscope.cn/datasets/swift/self-cognition

这里我们只展示可直接运行的demo,如果需要使用其他数据集进行微调,只需要修改 --dataset即可。自定义dataset支持传入本地路径、modelscope和huggingface中的dataset_id。

文档可以查看:https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E8%87%AA%E5%AE%9A%E4%B9%89%E4%B8%8E%E6%8B%93%E5%B1%95.md#%E8%87%AA%E5%AE%9A%E4%B9%89%E6%95%B0%E6%8D%AE%E9%9B%86

在开始微调之前,请确保您的环境已正确安装

# 安装ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]
pip install transformers>=4.43
# 如果要使用推理加速
pip install vllm>=0.5.3.post1

微调脚本:(如果出现显存不足,请增加GPU数量)

# 实验环境: 4 * A100
# 训练时间: 40小时
# 4 * 80GB GPU memory
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
    --model_type mistral-large-instruct-2407 \
    --dataset alpaca-zh#500 alpaca-en#500 self-cognition#500 \
    --logging_steps 5 \
    --max_length 2048 \
    --learning_rate 1e-4 \
    --output_dir output \
    --lora_target_modules ALL \
    --model_name 小黄 'Xiao Huang' \
    --model_author 魔搭 ModelScope \
    --deepspeed default-zero3

微调显存消耗:

image.png

微调过程的loss可视化:

image.png

微调后推理脚本如下,这里的ckpt_dir需要修改为训练生成的last checkpoint文件夹。我们可以使用vLLM对merge后的checkpoint进行推理加速。

# 实验环境: 4 * A100
# 4 * 80GB GPU memory
# merge-lora
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir output/mistral-large-instruct-2407/vx-xxx/checkpoint-xxx \
    --merge_lora true --merge_device_map cpu
# 使用vLLM进行推理加速
CUDA_VISIBLE_DEVICES=0,1,2,3 swift infer \
    --ckpt_dir output/mistral-large-instruct-2407/vx-xxx/checkpoint-xxx-merged \
    --tensor_parallel_size 4 --gpu_memory_utilization 0.9 \
    --infer_backend vllm

推理结果:

image.png

模型部署

使用4卡机器,部署mistral-large-instruct-2407模型

CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve <loca_path> --served_model_name mistral-large-instruct-2407 --tensor_parallel_size 4

显存利用率如下:

image.png

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
1
1
1
157
分享
相关文章
Qwen2.5-VL Cookbook来啦!手把手教你怎么用好视觉理解模型!
今天,Qwen团队发布了一系列展示 Qwen2.5-VL 用例的Notebook,包含本地模型和 API 的使用。
2002 22
Meet Llama3.1,405B赶超最强闭源模型!上魔搭社区一站体验、下载、推理、微调、部署
官方公布的Benchmark显示,Llama3.1 405B已在多项基准测试中超越GPT-4o和Claude 3.5 Sonnet,这是开源大模型首次赶超最强闭源模型!
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
16041 7
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
5083 19
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
3015 12
92页的llama 3.1技术报告,我替你们啃下来了
作者花了半个月时间,认真读完了llama 3.1技术报告,并总结成本文,希望能帮到对这个感兴趣的小伙伴们。
92页的llama 3.1技术报告,我替你们啃下来了
Llama 3.3开源!70B媲美405B性能,支持128K上下文
近期,Meta开源了Llama 3.3 多语言大型语言模型(LLM),Llama 3.3 是一个预训练并经过指令调优的生成模型,参数量为70B(文本输入/文本输出)。
1747 5
Llama 3.3开源!70B媲美405B性能,支持128K上下文
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问