【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

简介: 【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240724090953394

摘要

我们提出了BoTNet,这是一种概念上简单但功能强大的骨干架构,结合了自注意力机制,用于图像分类、目标检测和实例分割等多个计算机视觉任务。通过仅在ResNet的最后三个瓶颈块中用全局自注意力替换空间卷积,并且没有其他更改,我们的方法显著提高了实例分割和目标检测的基线性能,同时减少了参数,且在延迟方面的开销极小。通过设计BoTNet,我们还指出带有自注意力的ResNet瓶颈块可以视为Transformer块。无需任何额外的技巧,BoTNet在使用Mask R-CNN框架时,在COCO实例分割基准上达到了44.4%的Mask AP和49.7%的Box AP,超过了之前ResNeSt [67]在COCO验证集上发布的单模型和单尺度的最好结果。最后,我们提出了BoTNet设计在图像分类中的简单适应性,生成的模型在ImageNet基准上实现了84.7%的top-1准确率,同时在TPU-v3硬件上的“计算”时间比流行的EfficientNet模型快1.64倍。我们希望这种简单而有效的方法将作为未来自注意力模型研究的强大基线。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

BoTNet(Bottleneck Transformers for Visual Recognition)是一种结合自注意力机制和卷积神经网络的骨干架构,主要用于图像分类、目标检测和实例分割等视觉任务。BoTNet通过在ResNet的最后三个瓶颈块中用全局自注意力层替代空间卷积层,显著提高了基线性能,并减少了参数量,同时保持了较低的延迟。

  1. 瓶颈块与自注意力机制:

    • ResNet瓶颈块:经典的ResNet瓶颈块使用多个3×3的卷积层来提取特征。尽管卷积操作能够有效捕捉局部信息,但对于需要建模长距离依赖关系的任务(如实例分割)存在一定局限。
    • 多头自注意力(MHSA):BoTNet通过用多头自注意力层替代ResNet瓶颈块中的3×3卷积层,来捕捉全局信息。这种替换使得BoTNet不仅能够捕捉局部特征,还能建模图像中的长距离依赖关系,从而更有效地完成复杂的视觉任务。
  2. 架构设计:

    • 混合模型:BoTNet是一种混合模型,结合了卷积和自注意力机制。卷积层用于从大图像中高效地学习抽象和低分辨率的特征图,自注意力层则用于处理和聚合卷积层捕捉到的信息。
    • 具体实现:BoTNet保留了ResNet的大部分架构,仅在最后三个瓶颈块中将3×3卷积层替换为多头自注意力层。这种设计在实例分割任务中显著提升了性能,例如在COCO数据集上,BoTNet在Mask R-CNN框架下实现了44.4%的Mask AP和49.7%的Box AP。
  3. 计算效率与扩展性:

    • 计算效率:尽管自注意力机制的计算和内存需求随着空间维度呈二次方增长,但通过在低分辨率特征图上应用自注意力层,BoTNet有效地控制了计算开销。
    • 扩展性:BoTNet不仅适用于图像分类,还在更高分辨率的图像检测和实例分割任务中表现出色。例如,BoTNet在训练72个epoch后,在更大图像尺寸(1280×1280)上的性能优于ResNet,展示了其良好的扩展性。
  4. 性能表现:

    • COCO实例分割:在COCO实例分割基准上,BoTNet显著提升了基于ResNet的Mask R-CNN性能。例如,与使用ResNet-50的基线相比,BoTNet-50在使用相同超参数和训练配置下,Mask AP提高了1.2%。
    • ImageNet分类:在ImageNet分类任务中,BoTNet在标准训练设置下表现优异,尤其在使用增强的数据增强和更长时间训练时,BoTNet模型的top-1准确率达到了84.7%。
  5. 相对位置编码

    • 相对位置编码:BoTNet采用了相对位置编码,使得自注意力操作能够感知位置,这对于视觉任务尤为重要。这种编码方式不仅考虑内容信息,还能有效关联不同位置的特征,从而提高模型性能。

核心代码


class BoT3(nn.Module):

    def __init__(self, c1, c2, n=1, e=0.5, e2=1, w=20, h=20):  # ch_in, ch_out, number, , expansion,w,h
        super(BoT3, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(
            *[BottleneckTransformer(c_, c_, stride=1, heads=4, mhsa=True, resolution=(w, h), expansion=e2) for _ in
              range(n)])


    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140653663

相关文章
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
4月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
477 11
|
4月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
314 0
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
353 7
|
7月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
7月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
290 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
241 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章