基于CNN卷积神经网络的MQAM调制识别matlab仿真

简介: **理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。- **展望**: CNN强化无线通信信号处理,未来应用前景广阔。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含中文注释,训练库)

```digitDatasetPath = ['Image_train\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.8);

%定义卷积神经网络的基础结构
layers = [
......................................................................
];

%设置训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.00005, ...
'MaxEpochs', 100, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');

%使用训练集训练网络
[net,INFO]= trainNetwork(imdsTrain, layers, options);

IT =[1:length(INFO.TrainingLoss)];
LOSS=INFO.TrainingLoss;
Accuracy=INFO.TrainingAccuracy;

figure;
plot(IT(1:5:end),LOSS(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('LOSS');

figure;
plot(IT(1:5:end),Accuracy(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('Accuracy');

save CNN.mat
156

```

4.算法理论概述
基于卷积神经网络(Convolutional Neural Networks, CNN)的MQAM(Multi-Level Quadrature Amplitude Modulation)调制识别,是一种利用深度学习技术自动识别无线通信中信号调制类型的方法。MQAM作为一种高效的数字调制技术,通过不同的幅度和相位组合来传输信息,广泛应用于现代通信系统中。而CNN由于其在图像识别和特征提取方面的卓越能力,被成功应用于调制识别任务,通过学习信号波形的特征来区分不同的调制模式。下面详细介绍其工作原理及涉及的数学模型。

  MQAM调制识别任务的目标是从接收到的信号中识别出其调制类型,例如16QAM、64QAM等。传统方法往往依赖于精心设计的特征提取器和分类器,而CNN则能自动从原始数据中学习和提取高级特征,实现更高效和准确的识别。

   星座图是MQAM调制信号的二维散点图,横轴表示信号的I分量(In-phase),纵轴表示Q分量(Quadrature)。例如,16QAM的星座图有4个幅度等级,每个幅度等级有两个相位状态,形成一个典型的“十字”图案;32QAM和64QAM的星座图则更加密集,分别有16和36个等距分布的点。

4.1 CNN模型结构

5.png

4.2 损失函数与优化

6.png

4.3 训练与测试
训练阶段:通过大量标记的调制信号样本对模型进行训练,优化网络参数,使模型学会从信号中抽取与调制类型相关的特征。

测试阶段:在独立的测试集上评估模型性能,主要指标包括识别准确率、混淆矩阵等。

   基于CNN的MQAM调制识别,特别是针对星座图的识别,展示了深度学习在复杂信号处理任务中的强大潜力。通过自动学习调制信号的视觉特征,CNN不仅能够有效区分16QAM、32QAM和64QAM,还为处理更复杂的调制类型和实际通信环境下的信号识别提供了坚实的基础。随着技术的不断进步和模型优化,CNN在无线通信领域的应用将会更加广泛和深入。
相关文章
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
84 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
5天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
42 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
23天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
2月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
195 10
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
163 10

热门文章

最新文章