VBench 视频生成新榜首!Data-Juicer 沙盒实验室助力多模态数据与模型协同开发

简介: Data-Juicer 沙盒实验室的提出和其大规模的效果验证,是对多模态数据与模型协同开发这一方向高潜力的有力佐证。

图一:VBench排行榜(2024.7.16)

随着多模态人工智能技术的迅猛发展,大型多模态生成模型成为了推进领域革新的驱动引擎。面向多模态数据与模型协同开发,近日 Data-Juicer团队构建了开源沙盒实验室套件,通过数据与模型间的系统性研发工作流,调优数据和模型,在 VBench文生视频排行榜取得了新的榜首!

图二:Data-Juicer 沙盒实验室概览

多模态 AI 发展出了两条相对分离的路线:model-centric 和 data-centric,导致了协同开发的潜能未充分发挥,资源也未能高效利用。Data-Juicer 沙盒实验室应运而生,它是一个专为集成数据和模型协同开发所定制的中间层套件,为多模态模型与数据的科学开发“降本提效”。它提供了灵活的实验平台,内置大量先进的工具集,使得研发人员在工作流、开发行为和底层开发能力之间便捷组合,快速迭代小规模洞察,以便在更大规模场景下能“有的放矢”。

图三:“探测-分析-细化”工作流示意

我们提出的一种“探测-分析-细化”工作流,通过在最先进的 LLaVA-like 和 DiT-based 模型上的大量实践,显著提升了图文和视频文数据集的质量,并取得了更先进的模型性能。我们还通过在 Data-Juicer 算子上全方面的基准测试,分析并提供了丰富的数据质量、多样性与模型行为之间的深入洞察。

Data-Juicer 沙盒实验室的提出和其大规模的效果验证,是对多模态数据与模型协同开发这一方向高潜力的有力佐证。如今,我们将项目开源,以激励更多的创新者们一起加入。无论是数据科学家,还是 AI 模型工程师,都可以从这里获得基础支持,探索无限可能。立即上手体验,Data-Juicer 沙盒实验室助您塑造 AIGC 领域的明天!

Data-Model Co-Dev 沙盒论文链接:

http://arxiv.org/abs/2407.11784

Data-Model Co-Dev 综述论文链接:

https://arxiv.org/abs/2407.08583

项目链接:

https://github.com/modelscope/data-juicer/blob/main/docs/Sandbox.md

模型链接:

https://modelscope.cn/models/Data-Juicer/Data-Juicer-T2V?from=alizishequ__text

https://huggingface.co/datajuicer/Data-Juicer-T2V

相关文章
|
3月前
|
前端开发 Linux API
无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案
【8月更文挑战第3天】无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案
无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案
|
4月前
|
存储 机器学习/深度学习 人工智能
AI Agent技术的最新进展与改变世界的典型项目巡礼
【7月更文挑战第3天】 AI Agent技术的最新进展与改变世界的典型项目巡礼
 AI Agent技术的最新进展与改变世界的典型项目巡礼
|
3月前
|
存储 机器学习/深度学习 人工智能
AI工业变革问题之EPAI软件平台的主要功能内容如何解决
AI工业变革问题之EPAI软件平台的主要功能内容如何解决
47 0
|
5月前
|
人工智能 自然语言处理 机器人
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
探索谷歌最新的生成媒体模型:用于高分辨率视频生成的 Veo 和用于卓越文本生成图像能力的 Imagen 3。还可以了解使用 Music AI Sandbox 创作的新演示录音。
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
|
6月前
|
人工智能 Shell 开发工具
全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别:比赛全流程体验(baseline训练+Docker提交)
全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别:比赛全流程体验(baseline训练+Docker提交)
247 1
|
机器学习/深度学习 传感器 编解码
微软团队发布第一个基于AI的天气和气候基础模型 ClimaX
微软团队发布第一个基于AI的天气和气候基础模型 ClimaX
367 0
|
机器学习/深度学习 存储 传感器
Habitat Challenge 2022冠军方案:字节AI Lab提出融合传统和模仿学习的主动导航
Habitat Challenge 2022冠军方案:字节AI Lab提出融合传统和模仿学习的主动导航
256 0
|
机器学习/深度学习 人工智能 算法
固定参数的模型有多大潜力?港中文、上海AI Lab等提出高效视频理解框架EVL
固定参数的模型有多大潜力?港中文、上海AI Lab等提出高效视频理解框架EVL
145 0
|
人工智能 自然语言处理 算法
字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》
字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》
226 0
|
存储 人工智能 达摩院
浅谈面向专业用户的工具设计:达摩院 AI Earth 地球科学云平台设计案例
作者: 达摩院设计-壳恪你了解我们的地球嘛?从眼前方寸到浩瀚星空,你是否从卫星视角看过我们的家园?随着对地观测技术的发展和数智时代的到来,我们不仅仅满足于看见地球,更想要看懂地球。原本科研工作者们需要通过ArcGIS、Envi等传统桌面软件对本地存储的卫星遥感影像进行分析处理,从而得出地球上的自然资源如何分布、我们的城市在数十年间发生了什么样的变化、生态环境的变迁会对人类造成什么样的影响,而达摩院
593 2
浅谈面向专业用户的工具设计:达摩院 AI Earth 地球科学云平台设计案例
下一篇
无影云桌面