AI技术在制造业

简介: 【7月更文挑战第23天】AI技术在制造业

AI技术在制造业的应用广泛且具有重要的战略意义。AI不仅改变了制造业的生产效率、产品质量和智能化水平,还为整个产业的转型升级提供了强大的技术支持。具体如下:

  1. 全流程赋能
    • 生产计划:AI可以通过大模型算法优化生产计划,提高生产效率[^2^]。例如,利用生成式AI进行数据分析和智能问答,有助于了解产线设备的运营状态[^2^]。
    • 生产工艺优化:AI能够基于大模型形成的智能工艺推荐算法,优化生产工艺,提升生产效益[^2^]。如海尔卡奥斯工业大模型已经帮助制造企业实现了注塑生产工艺优化[^2^]。
    • 生产过程管控:AI构建生产线优化模型,实现生产线的自动调整和优化,降低生产成本和人力成本[^2^]。
    • 质量控制:AI通过机器视觉和大数据平台进行智能质量检测,自动识别和分类产品缺陷,提高检测效率和准确性[^2^]。
    • 设备维护:AI预测性维护,通过对设备运行数据的实时监控和分析,预测设备故障趋势,提前进行维护,降低设备故障率[^2^]。
  2. 智能制造系统架构与实现
    • 智能制造系统架构:新一代智能制造系统增加了信息系统的认知和学习功能,使得信息系统不仅具备感知、计算分析与控制能力,还具备学习提升和产生知识的能力[^5^]。
    • 关键绩效指标(KPI):智能制造系统通过集成人、信息系统和物理系统的优势,使企业的工作效率、质量与稳定性显著提升。衡量这些效果的关键绩效指标包括良品率、效率、设备综合效率指数(OEE)、交付周期等[^5^]。
    • 智能制造系统的实现探索:企业通过建设智能制造系统提升盈利能力和竞争力。智能制造系统的实现可以通过以企业为核心的闭环系统来描述,包括需求分析、产品设计、生产、物流等全生命周期各环节的优化调整[^5^]。
  3. 产业生态与市场规模
    • 产业结构:人工智能在制造业的应用可分为三部分:上游基础层、中游系统层和下游应用层。基础层包括数据、算法、算力等基础设施;系统层包括工业控制系统和工业互联网平台;应用层按行业划分可在电子通信、电力电气、汽车制造等领域应用[^1^]。
    • 市场规模:根据Bizwit数据,2023年人工智能在中国制造业应用的市场规模约为56亿元,预计到2025年将达到141亿元[^1^]。
  4. 政策支持与技术发展
    • 政策端:国家发布系列政策推动人工智能在制造业创新发展。例如,《“十四五”智能制造发展规划》强调加强关键核心技术攻关,研发适用性技术,增强融合发展新动能[^1^]。
    • 技术端:算法、通用技术和工业知识的突破为人工智能赋能新型制造业奠定了基础。具体包括机器学习、深度学习、机器视觉、自然语言处理等技术的不断进步[^1^]。
  5. 应用价值与未来展望
    • 应用价值:人工智能从商业和产业价值两方面赋能制造业,覆盖全流程各环节,提高运作效率,实现精细化管理,助力企业降本增效。同时,推动制造业从产品为中心向用户为中心转变,满足消费者个性化需求[^1^]。
    • 未来展望:短期内,生成式AI已经在研发设计规划、生产过程管控、经营管理优化等环节展现出潜力;长期来看,大模型的应用将渗透到工业机理,从设计研发到生产制造再到运营管理,打通制造全链条[^2^][^3^]。

综上所述,AI技术在制造业中的应用涵盖了生产流程的各个环节,从生产计划、生产工艺优化、生产过程管控到质量控制和设备维护,极大地提高了生产效率和产品质量。同时,智能制造系统的架构与实现形式为企业提供了更高效、更智能的生产解决方案。在政策支持和技术发展的推动下,AI+制造业的市场前景广阔,应用价值显著。未来,随着技术的进一步发展和应用的深化,AI将在制造业中发挥更大的作用,推动整个产业向智能化、高效化方向发展。

目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
6天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
101 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AI写作新时代:自然语言生成技术与写作助手的结合
AI写作新时代:自然语言生成技术与写作助手的结合
33 16
|
3天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
|
4天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
11天前
|
人工智能 分布式计算 供应链
高效提取图片信息:AI技术赋能企业数字化转型
本文介绍了如何通过AI技术高效提取图片中的结构化信息,提升企业运营效率。具体应用场景包括票据与合同管理、电商商品信息管理、保险理赔和物流单据处理等。AI技术能将传统人工录入流程缩短至秒级,准确率高达99%,减少人为错误,提升客户满意度。方案优势在于易于扩展、灵活高性价比的调用模式及便捷安全的云产品接入。文中还详细描述了部署应用、访问示例应用及使用官方示例进行信息提取的操作步骤,并提供了参考链接和源码下载途径。
|
10天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。
|
17天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
师资研修|AI技术赋能教材建设和课程开发——乌鲁木齐某教育部门
近日,TsingtaoAI派出AI专家为乌鲁木齐中职院校的教师团队,举办“AI技术赋能教材建设与课程开发”的师资研修。此次培训由TsingtaoAI的AI专家高寒和教育专家刘建老师亲自授课,面对的是来自乌鲁木齐的教育工作者,特别是中职院校的教学骨干。整个活动不仅涉及人工智能技术本身的深度解析,还深入探讨了如何将这些前沿技术高效应用于教材和课程体系的创新。
30 0
|
14天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。