人工智能LLM问题之LLM AS RS如何解决

简介: 人工智能LLM问题之LLM AS RS如何解决

问题一:能不能讲讲LLM AS RS


能不能讲讲LLM AS RS


参考回答:

这种方式直接把LLM作为一个RS系统,不过这种对LLM精准性要求比较高。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615747


问题二:能不能讲讲Pretraining-FLM有没有什么可参考的文献


能不能讲讲Pretraining-FLM有没有什么可参考的文献


参考回答:

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

在这个论文中作者提出了一个统一的架构来利用大模型来进行推荐。文章提出来对目前主流的推荐场景(序列推荐、评分预测、可解释性推荐、评论总结等)多个任务都进行了统一,构造了一个模型P5。在预训练阶段,采用统一的一个模型结构,设计不同的prompt模版来进行个性化的推理,所有的任务做到很大程度的统一。预训练模型用了T5模型。通过自己场景的数据Pretraining之后,在各个数据集上的表现都还是不错的,不过在各个数据集合上的表现是不一样的。但是这个论文感觉还是蛮不错的,可以做到各个任务的统一,而且最终效果还是可圈可点的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615753


问题三:能不能讲讲Fine-Tuning-FLM有没有什么可参考的文献


能不能讲讲Fine-Tuning-FLM有没有什么可参考的文献


参考回答:

Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System

本文中提出了一种用 LLMs 增强传统推荐的范式 ,通过将用户画像和历史交互转换为 Prompt,Chat-Rec 可以有效地学习用户的偏好,它不需要训练,而是完全依赖于上下文学习,并可以有效推理出用户和产品之间之间的联系。通过 LLM 的增强,在每次对话后都可以迭代用户偏好,更新候选推荐结果。和基于检索增强的QA一样,LLM与传统搜推系统结合,为了保证结果更加可靠,还需要增强一下。论文图如下,流程还是蛮清晰的。给推荐系统怎么使用LLM指明了一条路。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615754


问题四:传统的新闻推荐有什么问题


传统的新闻推荐有什么问题


参考回答:

对于传统的新闻推荐,往往有如下的几个问题:

1. 冷启动。对于长尾或新用户,模型无法较好的建模和理解他们的兴趣。冷启动是推荐系统经常遇到的问题

2. 用户画像建模。出于隐私保护的考量,现有的数据集可能无法包含详细的用户画像信息。另外用户的兴趣往往是多样的,怎么能比较精准的客户还是蛮有挑战性的。

3. 新闻内容理解。由于新闻数据中标题和内容存在不一致的问题,导致难以识别新闻中的关键概念和主题。而且新闻一般内容都会比较多。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615755


问题五:存储的物理层是什么


存储的物理层是什么


参考回答:

存储的物理层实际无非就是磁盘(disk),即磁记录技术存储数据的存储器。磁盘是计算机主要的存储介质,可以存储大量的二进制数据,并且断电后也能保持数据不丢失。早期计算机使用的磁盘是软磁盘(Floppy Disk,简称软盘),如今常用的磁盘是硬磁盘(Hard disk,简称硬盘)。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615756

目录
打赏
0
0
0
0
842
分享
相关文章
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(LLM、AGI和AIGC都是什么)(一)
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(LLM、AGI和AIGC都是什么)
643 0
【大模型】讨论 LLM 在更广泛的通用人工智能 (AGI) 领域中的作用
【5月更文挑战第5天】【大模型】讨论 LLM 在更广泛的通用人工智能 (AGI) 领域中的作用
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(LLM、AGI和AIGC都是什么)(二)
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(LLM、AGI和AIGC都是什么)
495 0
【2023】COMAP美赛数模中的大型语言模型LLM和生成式人工智能工具的使用
【2023】COMAP美赛数模中的大型语言模型LLM和生成式人工智能工具的使用
257 0
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
371 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问