客户在哪儿AI与其他服务于B端的科技产品有何不同

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 客户在哪儿AI与市面上其他几类服务于B端的科技产品有什么不同

客户在哪儿AI全面提供服务已经快一个月了,我们收到了一些反馈。其中问的最多也是最有意思的问题就是,客户在哪儿AI与市面上其他几类服务于B端的科技产品有什么不同。

首先我们回顾一下,客户在哪儿AI是干什么的:

客户在哪儿AI生产的是企业全历史行为数据,同时还针对ToB企业,提供基于企业全历史行为数据的数据分析服务。具体来说,企业全历史行为数据按时间维度收录了企业及其各岗位负责人在什么地点、与什么人、做了什么事、收获了什么等所有可挖掘的行为。是连企业自己都没有的完整的企业行为数据库。当把很多的企业全历史行为数据聚在一起分析的时候,就能涌现出上帝视角般的营销洞察能力。其中的共性分析结果服务ToB市场部,个性分析结果服务销售部,整体洞察服务于决策层。

明确了客户在哪儿AI是干什么的之后,我们来看看它与市面上其他几类服务于B端的科技产品有什么不同:

一、客户在哪儿AI的企业全历史行为数据 VS 企业信息查询平台上的数据

1、 数据不同:企业信息查询平台主要提供企业工商信息和企业信用信息;客户在哪儿AI提供的是企业的行为数据,确切说是,企业全历史行为数据。前者侧重状态,后者侧重行为。

2、 数据来源不同:企业信息查询平台的数据大部分是抓取来的结构化数据;客户在哪儿AI是从全网的各种数据中挖掘出企业的行为数据,再经过复杂的实体统一,才能生产出企业全历史行为数据。并且,考虑到很多公司没有数据分析相关岗位,客户在哪儿AI还提供免费的数据分析服务。

3、 数据用途不同:企业信息查询平台多用于了解企业概况和企业经营状态、信用等级等;客户在哪儿AI则专注于通过洞察企业行为来指导ToB营销获客。

首先,通过上面的差异分析,你应该知道了,只要是跟企业行为数据相关的活儿,就基本只有客户在哪儿AI能干。比如,分析用最少场次就能覆盖最多目标潜客的活动都有哪些,就必须要依托企业行为数据。而且,一个企业的状态数据可能很长时间都不会怎么变,但行为数据却日日更新。因为经营本身就是一个个行为的集合。

另外,工商信息还有一个比较尴尬的问题是,出于各种各样的经营需要,往往同一个企业实体,其工商税务法律法规和实际经营是两套信息体系。例如,法人代表与实际控制人、国民经济行业分类与企业自认行业、参保人员和企业实际员工等等。

有这样一个例子:有一个公司,其工商信息显示,它所属行业是科技推广和应用服务业,参保人数是44人。如果你是一个某大型人力资源管理系统的销售,你应该不会考虑这家公司了吧?但这家公司,是小米!

二、客户在哪儿AI的ToB获客服务 VS AI外呼机器人的ToB获客服务

1、营销触达方式不同:人工智能外呼系统以AI模拟真人的方式通过拨打电话向接听方推销产品和服务;而客户在哪儿AI是利用海量的企业全历史行为数据,指导和优化所有已被证实有效的ToB营销手段来实现触达。所以,客户在哪儿AI提供的是一眼看清目标客户在哪、一眼看透如何营销有效、一眼看穿竞争对手意图的上帝视角。但它为什么不直接触达呢?请看下一点。

2、同样是ToB,一个是针对小B一个是面向大B:人工智能外呼系统更多的用于获取小B客户。例如,向初创型企业推销企业代理记账这类服务就比较适合使用AI外呼机器人。因为这种客单价低、决策链短的刚需,是谁先发现大概率这个单子就是谁的。所以,用成本低廉的拟人电话直接询问,就显得尤为合适了。然而,对于大B客户,这条路行不通。

首先,稍微有点规模的企业的管理人员的电话号,几乎不会在公网上暴露。外呼没有了手机号资源。其次,能够成为管理者的人,几乎都能第一时间判断出拨打电话的是真人还是机器人。如此一来,挂机是小,对你品牌和服务的第一印象是负面的,才是最重大的损失。

所以,前面说了,客户在哪儿AI并不直接触达客户,而是给ToB企业一个营销获客的上帝视角,最终实现触达的还是ToB企业的员工。这种更正式、更自然、更人与人的方式,才是突破客单价高、决策期长、决策人多的大B客户的第一法宝。

3、 同样是AI但工作形式不同:AI机器人外呼系统侧重于AI的语音识别和语音合成,现在也融入了大模型技术;而客户在哪儿AI主要应用自然语言处理中的知识图谱技术,并在此基础上实现了复杂实体统一等多项创新性突破,是满足企业管理者对企业级数据强烈需求的第一款AI产品。

三、客户在哪儿AI VS 大模型(如GPT)

1、任务不同,一个是信息生成,一个是信息抽取:GPT-4、文心一言等大模型属于生成式AI。它们都由全网的知识训练而成,会按提示词,也就是你对它的指令或关键词句,‌返回给你比较合适的回答;而“客户在哪儿AI”所专注的信息抽取和GPT截然不同。它学习的不是全网知识,而是特定领域知识较为丰富的数据标注专家教给它哪些是要它学会提取的信息。例如,“巴黎奥运选择与法国设计师马蒂厄·勒汉纽尔进行合作。”这句话中,客户在哪儿AI直接就会把“巴黎奥运 设计师 马蒂厄·勒汉纽尔”保存起来,而GPT是你要问它“巴黎奥运的设计师是谁?”它才会告诉你。

2、目的不同,一个是为了平权,一个是为了霸权:生成式AI已广泛服务于公众,尽管有的服务会收一点费用,但其本质,就是在让任何人都可以平等快速的获取到AI学会的任何知识,是一个伟大的知识平权的产品。但话说回来,在商业领域,人们追求的是“霸权”而非“平权”,即,拥有他人未知的信息或高于他人的认知。所以,GPT等大模型是个人办公的得力助手,但无法提供给你差异化的商业洞察,不是智囊。

相比之下,“客户在哪儿AI”在全网抽取用户指定的高价值商业信息,生成结构化的大数据。足够多的你的客户的数据和足够多的你的竞争对手的数据,会让你的洞察能力达到理论的极值。所以,在商业分析、ToB营销获客等领域,客户在哪儿AI才是更专业的存在。

相关文章
|
12天前
|
人工智能 vr&ar UED
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
|
13天前
|
人工智能 自然语言处理 安全
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
OPPO在2025开发者大会上展现智慧服务新范式:通过大模型与意图识别技术,构建全场景入口矩阵,实现“服务找人”。打通负一屏、小布助手等系统级入口,让服务主动触达用户;为开发者提供统一意图标准、一站式平台与安全准则,降低适配成本,共建开放生态。
125 31
|
2月前
|
人工智能 云栖大会 调度
「2025云栖大会」“简单易用的智能云网络,加速客户AI创新”专场分论坛诚邀莅临
”简单易用的智能云网络,加速客户AI创新“专场分论坛将于9月24日13:30-17:00在云栖小镇D1-5号馆举办,本场技术分论坛将发布多项云网络创新成果,深度揭秘支撑AI时代的超低时延、自适应调度与跨域协同核心技术。同时来自领先企业的技术先锋将首次公开其在模型训练、企业出海等高复杂场景中的突破性实践,展现如何通过下一代云网络实现算力效率跃升与成本重构,定义AI时代网络新范式。
135 4
|
17天前
|
人工智能 供应链 搜索推荐
拔俗AI 智能就业咨询服务平台:求职者的导航,企业的招聘滤网
AI智能就业平台破解求职招聘困局:精准匹配求职者、企业与高校,打破信息壁垒。简历诊断、岗位推荐、技能提升一站式服务,让就业更高效。
|
17天前
|
人工智能 Cloud Native 自然语言处理
拔俗AI智能体服务开发:你的7x24小时数字员工,让企业效率飙升的秘密武器
在“人效为王”时代,企业面临服务响应慢、成本高、协同难等痛点。阿里云AI智能体以自主决策、多模态交互、持续学习三大引擎,打造永不疲倦的“数字员工”,实现7×24小时高效服务,助力企业降本增效、驱动创新增长。(238字)
|
17天前
|
人工智能 算法 数据安全/隐私保护
拔俗AI多模态心理风险预警系统:用科技守护心理健康的第一道防线
AI多模态心理风险预警系统通过语音、文本、表情与行为数据,智能识别抑郁、焦虑等心理风险,实现早期干预。融合多源信息,提升准确率,广泛应用于校园、企业,助力心理健康服务从“被动响应”转向“主动预防”,为心灵筑起智能防线。(238字)
|
17天前
|
人工智能 供应链 算法
AI 产业服务平台:打造产业智能化的“加速器”与“连接器”
AI产业服务平台整合技术、数据、算力与人才,为中小企业提供低门槛、一站式AI赋能服务,覆盖研发、生产、营销、管理全链条,助力产业智能化转型。
|
2月前
|
存储 人工智能 监控
如何用RAG增强的动态能力与大模型结合打造企业AI产品?
客户的问题往往涉及最新的政策变化、复杂的业务规则,数据量越来越多,而大模型对这些私有知识和上下文信息的理解总是差强人意。
80 2
|
2月前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
348 3
下一篇
开通oss服务