数据架构问题之BI的早期概念是什么

简介: 数据架构问题之BI的早期概念是什么

问题一:线上研发发布阶段完成后会发生什么?



参考答案:

发布阶段完成后,符合标准的主分包产物会被保存下来。在后续的迭代中,如果某个分包未发生变更,则会直接复用这些产物。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616707



问题二:多端业务的最佳实践应用架构中基础服务与研发规范是什么?



参考答案:

最底部的是基础服务与研发规范,由 多端研发框架、多端研发平台和多端研发规范,来提供统一的研发支撑,保障业务研发的基础能力、体验和效率,并负责将相关的业务统一打包、封装、集成,并部署和投放到不同的渠道



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616708



问题三:多端业务的最佳实践应用架构中宿主应用框架是什么?



参考答案:

第二层是宿主应用框架(Framework),也可以认为是多端统一解决方案,承接了面向于业务研发并适配了多端差异的基础 API(如 登录、定位、请求、路由、实验、风控、埋点、容器等)、基础组件和最佳实践,通过分渠道的配置化运行、标准化的接入手段和中心化的能力管理,来保障整体框架的轻量化、标准化与持续迭代和升级



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616709



问题四:多端业务的最佳实践应用架构中渠道应用主体是什么?



参考答案:

最上层是各个业务的应用实体,有一个壳工程 + N个业务工程组成,壳工程承接各个渠道定制化的一些能力,而并将下层应用框架的能力暴露给上层的各个业务



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616710



问题五:BI的早期概念是什么?



参考答案:

描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616711

目录
打赏
0
0
0
0
1160
分享
相关文章
|
15天前
|
Doris基础-架构、数据模型、数据划分
Apache Doris 是一款高性能、实时分析型数据库,基于MPP架构,支持高并发查询与复杂分析。其前身是百度的Palo项目,现为Apache顶级项目。Doris适用于报表分析、数据仓库构建、日志检索等场景,具备存算一体与存算分离两种架构,灵活适应不同业务需求。它提供主键、明细和聚合三种数据模型,便于高效处理更新、存储与统计汇总操作,广泛应用于大数据分析领域。
156 2
基于SCA的软件无线电系统的概念与架构
软件通信体系架构(SCA)是基于软件定义无线电(SDR)思想构建的开放式、标准化和模块化平台,旨在通过软件实现通信功能的灵活配置。SCA起源于美军为解决“信息烟囱”问题而推出的联合战术无线电系统(JTRS),其核心目标是提升多军种联合作战通信能力。 上海介方信息公司的OpenSCA操作环境严格遵循SCA4.1/SRTF标准,支持高集成、嵌入式等场景,适用于军用通信、雷达等领域。 SCA体系包括目标平台资源层(TRL)、环境抽象层(EAL)、SRTF操作环境(OE)及应用层(AL)。其中,SRTF操作环境包含操作系统、运行时环境(RTE)和核心框架(CF),提供波形管理、资源调度等功能。
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
906 7
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
345 69
产品测评 | 大模型时代下全场景数据消费平台的智能BI—Quick BI深度解析
Quick BI是阿里云旗下的全场景数据消费平台,助力企业实现数据驱动决策。用户可通过连接多种数据源(如本地文件、数据库等)进行数据分析,并借助智能小Q助手以对话形式查询数据或搭建报表。平台支持数据可视化、模板快速构建视图等功能,但目前存在不支持JSON格式文件、部分功能灵活性不足等问题。整体而言,Quick BI在数据分析与展示上表现出强大能力,适合业务类数据处理,未来可在智能化及运维场景支持上进一步优化。
基于Transformer架构的时间序列数据去噪技术研究
本文介绍了一种基于Transformer架构的时间序列去噪模型。通过生成合成数据训练,模型在不同噪声条件下展现出强去噪能力。文章详细解析了Transformer的输入嵌入、位置编码、自注意力机制及前馈网络等关键组件,并分析实验结果与注意力权重分布。研究为特定任务的模型优化和专业去噪模型开发奠定了基础。
257 14
基于Transformer架构的时间序列数据去噪技术研究
Quick BI评测报告:从IT开发视角评测“全场景数据消费式BI平台”
Quick BI评测报告:从IT开发视角评测“全场景数据消费式BI平台”
152 0
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
214 2
新闻聚合项目:多源异构数据的采集与存储架构
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
176 8
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
颠覆传统BI认知:Quick BI如何用“傻瓜式”操作重塑数据决策?
Quick BI是阿里云推出的一款零代码+AI数据分析工具,专为业务人员设计。通过简洁的界面和强大的功能,它让数据“开口说话”。从Excel秒变智能资产,到拖拽式构建高定看板,再到自然语言查询与预测分析,菜鸟也能轻松上手。企业微信集成、移动端优化等功能,助力实时决策。Quick BI打破技术壁垒,推动数据民主化,让每个岗位都能用业务语言对话数据,实现真正的数据驱动转型。

热门文章

最新文章

AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等