Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)

Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA),这是一种经典的监督学习算法,用于分类问题,特别是当类别数量较少且样本服从高斯分布时效果尤为显著。LDA通过寻找一个线性组合,使得不同类别的数据在投影后的空间上尽可能分开。

解释

Fisher线性判别分析的基本思想是将高维数据投影到低维空间上,同时保持类别之间的可分性。投影后,同一类别的数据点尽可能接近,而不同类别的数据点尽可能远离。LDA假设每个类别的数据都服从高斯分布,并且所有类别的高斯分布具有相同的协方差矩阵。

LDA的主要步骤如下:

  1. 计算类内散度矩阵:对于每个类别,计算其样本的均值和协方差矩阵,进而得到类内散度矩阵。
  2. 计算类间散度矩阵:计算所有样本的均值,以及每个类别样本均值与总均值的差异,进而得到类间散度矩阵。
  3. 求解投影矩阵:通过最大化类间散度矩阵与类内散度矩阵的广义瑞利商,求解投影矩阵。
  4. 投影数据:使用投影矩阵将数据投影到低维空间上。
  5. 分类:在投影后的空间上,根据投影点的位置进行分类。

Python代码示例

下面是一个使用scikit-learn库实现Fisher线性判别分析的Python代码示例:

# 导入必要的库
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np

# 加载数据集(这里使用鸢尾花数据集作为示例)
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建LDA模型对象
lda = LDA(n_components=2)  # 这里n_components设置为2,表示将数据投影到二维空间上

# 训练模型
lda.fit(X_train, y_train)

# 预测测试集
y_pred = lda.predict(X_test)

# 计算分类准确率
accuracy = accuracy_score(y_test, y_pred)
print('分类准确率:', accuracy)

# 如果需要,可以获取投影后的数据
X_train_projected = lda.transform(X_train)
X_test_projected = lda.transform(X_test)

# 注意:在实际应用中,通常不需要直接获取投影后的数据,除非有特定的可视化需求
AI 代码解读

注释

  • LinearDiscriminantAnalysis是scikit-learn库中实现LDA的类,这里为了方便阅读,我们将其重命名为LDA
  • load_iris函数用于加载鸢尾花数据集,这是一个常用的分类问题数据集。
  • train_test_split函数用于划分训练集和测试集。
  • accuracy_score函数用于计算分类准确率。
  • n_components参数指定了投影后的空间维度,这里设置为2是为了方便可视化。在实际应用中,可以根据需要调整这个参数。
  • fit方法用于训练模型,predict方法用于预测测试集的结果。
  • transform方法用于获取投影后的数据,但在大多数情况下,我们只需要预测结果,而不需要直接获取投影后的数据。
目录
打赏
0
1
1
0
89
分享
相关文章
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
PAI 重磅发布模型权重服务,大幅降低模型推理冷启动与扩容时长
阿里云人工智能平台PAI 平台推出模型权重服务,通过分布式缓存架构、RDMA高速传输、智能分片等技术,显著提升大语言模型部署效率,解决模型加载耗时过长的业界难题。实测显示,Qwen3-32B冷启动时间从953秒降至82秒(降幅91.4%),扩容时间缩短98.2%。
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。
DistilQwen-ThoughtX 蒸馏模型在 PAI-ModelGallery 的训练、评测、压缩及部署实践
通过 PAI-ModelGallery,可一站式零代码完成 DistilQwen-ThoughtX 系列模型的训练、评测、压缩和部署。
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
338 12
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
142 6
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等