Python与Apache Spark:实时AI的大数据引擎——Spark Streaming实战

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 7月更文挑战第9天

讨如何将Python与Apache Spark结合起来,特别是利用Spark Streaming处理实时数据流中的AI任务。Spark Streaming是一个强大的工具,能够实现实时数据处理,非常适合大规模的数据流分析和机器学习任务。

第一步:环境配置

安装Spark:确保已经安装了Apache Spark,包括其Python接口pyspark和相关的依赖库。
启动Spark集群:如果你在本地运行,可以通过spark-submit命令启动;如果是Docker或YARN,需相应地配置。
第二部分:设置Spark Streaming

导入必要库:pyspark.sql, pyspark.streaming, pyspark.ml等。
初始化SparkSession:这是连接到Spark集群的主要入口点。
from pyspark.sql import SparkSession
from pyspark.sql.functions import window, col
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
第三步:数据源与数据处理

设置数据源:如Kafka、Flume、Twitter等。创建一个DataFrame来读取实时数据流。
data_stream = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "your-topic") \
.load()
第四部分:实时特征工程与模型训练

对实时数据进行预处理,例如使用窗口函数(window)聚合数据。
使用VectorAssembler将特征合并为向量,便于机器学习模型处理。
assembler = VectorAssembler(
inputCols=[...], # 输入列名列表
outputCol="features"
)
input_df = assembler.transform(data_stream)
运行一个滚动窗口的ML Pipeline,训练和更新模型。
windowed_df = input_df.withWatermark("timestamp", "1 minute")
lr_model = LogisticRegression(featuresCol="features", labelCol="label")
pipeline = Pipeline(stages=[assembler, lr_model])
model = pipeline.fit(windowed_df)
prediction = model.transform(windowed_df)
第五部分:实时预测与结果展示

将预测结果写入另一个数据源,如Kafka,或实时显示在UI上。
output = prediction.selectExpr("prediction", "raw_data.*")
output.writeStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("topic", "predictions") \
.start()
第六部分:监控与优化

使用Spark UI或第三方工具(如Prometheus和Grafana)持续监控实时任务的性能和模型准确性。
通过这个教程,你将了解如何在Python和Spark Streaming的结合中,处理实时数据流并在分布式环境中执行机器学习任务。记住,实时分析需要考虑到数据延迟和实时更新的挑战,以及如何有效地处理大量数据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
24 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
2天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年12月】
大数据& AI 产品技术月刊【2024年12月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
存储 数据挖掘 数据处理
巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践
随着数据湖技术的发展,企业纷纷探索其优化潜力。本文分享了巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践。Paimon 支持流式和批处理,提供高性能、统一的数据访问和流批一体的优势。通过示例代码和实践经验,展示了如何高效处理实时数据,解决了数据一致性和故障恢复等挑战。
132 61
|
1月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
3月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
127 10
|
3月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
76 1
强化学习笔记2-Python/OpenAI/TensorFlow/ROS-程序指令
强化学习笔记2-Python/OpenAI/TensorFlow/ROS-程序指令TensorFlowTensorFlow是Google的一个开源软件库,广泛用于数值计算。它使用可在许多不同平台上共享和执行的数据流图。
1338 0
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
148 97
下一篇
开通oss服务