【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量

简介: YOLO目标检测专栏介绍了PP-LCNet,一种基于MKLDNN加速的轻量级CPU网络,提升了模型在多任务中的性能。PP-LCNet利用H-Swish、大核卷积、SE模块和全局平均池化后的全连接层,实现低延迟下的高准确性。代码和预训练模型可在PaddlePaddle的PaddleClas找到。文章提供了网络结构、核心代码及性能提升的详细信息。更多实战案例和YOLO改进见相关链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240715221512509

摘要

我们提出了一种基于MKLDNN加速策略的轻量级CPU网络,命名为PP-LCNet,它在多项任务中提高了轻量级模型的性能。本文列出了在延迟几乎不变的情况下能够提高网络准确性的技术。通过这些改进,PP-LCNet在相同推理时间内的分类准确性可以大大超过之前的网络结构。如图1所示,它的性能优于最先进的模型。在计算机视觉的下游任务中,如目标检测、语义分割等,它也表现得非常出色。我们所有的实验都是基于PaddlePaddle1进行的。代码和预训练模型可在PaddleClas2中找到。

文章链接

论文地址:论文地址

代码地址:代码地址

代码地址:代码地址

基本原理

PP-LCNet是一种基于MKLDNN加速策略的轻量级CPU卷积神经网络,旨在提高轻量级模型在多个任务上的性能。该网络通过一系列技术原理和改进,实现了在保持低延迟的同时提高准确性和效率。

  1. 网络架构:PP-LCNet采用了一种轻量级的卷积神经网络架构,结合了MKLDNN加速策略,使其在CPU上能够高效运行。网络结构经过精心设计,旨在在保持高性能的同时减少计算和内存消耗。

  2. 技术原理

    • H-Swish和大核卷积:PP-LCNet利用H-Swish激活函数和大核卷积技术来提高模型性能,同时几乎不增加推理时间。
    • SE模块:通过添加少量SE模块可以进一步提升模型性能。
    • 全局平均池化后的大型全连接层:在全局平均池化层后增加一个较大的全连接层可以显著提高准确性。
    • Dropout策略:在涉及相对较大矩阵的情况下,使用Dropout策略可以进一步提高模型的准确性。
  3. 性能提升:PP-LCNet在保持低延迟的情况下,通过上述技术原理和改进,取得了显著的性能提升。不仅在图像分类任务中表现优异,还在计算机视觉的其他领域,如目标检测、语义分割等方面表现出色。

  4. 模型参数和性能:PP-LCNet根据不同的缩放比例(如0.25x、0.35x、0.5x等),具有不同的模型参数、FLOPs、Top-1准确率、Top-5准确率和推理延迟。通过这些指标可以评估不同规模的PP-LCNet在不同任务上的性能表现。

核心代码

class PPLCNet(nn.Module):
    def __init__(self, scale=1.0, num_classes=1000, dropout_prob=0.2):
        super(PPLCNet, self).__init__()
        self.cfgs = [
           # k,  c,  s, SE
            [3,  32, 1, 0],

            [3,  64, 2, 0],
            [3,  64, 1, 0],

            [3,  128, 2, 0],
            [3,  128, 1, 0],

            [5,  256, 2, 0],
            [5,  256, 1, 0],
            [5,  256, 1, 0],
            [5,  256, 1, 0],
            [5,  256, 1, 0],
            [5,  256, 1, 0],

            [5,  512, 2, 1],
            [5,  512, 1, 1],
        ]
        self.scale = scale

        input_channel = _make_divisible(16 * scale)
        layers = [nn.Conv2d(3, input_channel, 3, 2, 1, bias=False), HardSwish()]

        block = DepSepConv
        for k, c, s, use_se in self.cfgs:
            output_channel = _make_divisible(c * scale)
            layers.append(block(input_channel, output_channel, k, s, use_se))
            input_channel = output_channel

        self.features = nn.Sequential(*layers)

        # # building last several layers
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Conv2d(input_channel, 1280, 1, 1, 0)
        self.hwish = HardSwish()
        self.dropout = nn.Dropout(p=dropout_prob)
        self.classifier = nn.Linear(1280, num_classes)

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = self.fc(x)
        x = self.hwish(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)

        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0, 0.001)
                m.bias.data.zero_()

task与yaml配置

详见: https://blog.csdn.net/shangyanaf/article/details/140450841

相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
98 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
114 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
|
2月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
85 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
2月前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
55 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
2月前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
62 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
123 9
|
8月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
112 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
9月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
257 1

热门文章

最新文章