MaxCompute产品使用合集之如何提升sql任务并行度

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。

问题一:请问一下大数据计算MaxCompute这两个SDK有什么区别?

请问一下大数据计算MaxCompute这两个SDK有什么区别?

参考回答:

按目前MaxCompute的文档来操作吧,上边这篇可能时间比较久了,我研究一下。

https://help.aliyun.com/zh/maxcompute/user-guide/sdk-for-java?spm=a2c4g.11186623.0.i62 


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593577



问题二:大数据计算MaxCompute sql任务并行度怎么提升?

大数据计算MaxCompute sql任务并行度怎么提升?

参考回答:

并行度设置 和 并行度的优化 可以参考这篇文档https://help.aliyun.com/zh/maxcompute/use-cases/optimize-sql-statements?spm=a2c4g.11186623.0.i43#section-101-eyk-y4l 


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/589131



问题三:大数据计算MaxCompute的PyODPS和python udf这两者区别是?

大数据计算MaxCompute的PyODPS和python udf这两者区别是?


参考回答:

python udf使用第三方包需要通过:sys.path.insert(0, 'work/GDAL-3.0.4-cp37-cp37m-linux_x86_64.zip')

https://help.aliyun.com/zh/maxcompute/user-guide/reference-third-party-packages-in-python-udfs?spm=a2c4g.11186623.0.i67#section-uxo-u1g-j8o

PyODPS使用第三方包方式参考这个

https://help.aliyun.com/zh/maxcompute/user-guide/reference-a-third-party-package-in-a-pyodps-node-1?spm=a2c4g.11186623.0.i78#section-4ls-mfp-n2x


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593574



问题四:大数据计算MaxCompute在spark程序里面操作表数据,应该一次查询多少条 ?

大数据计算MaxCompute在spark程序里面操作表数据,应该一次查询多少条 ?


参考回答:

文档没说有查询多少条的限制。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593573



问题五:大数据计算MaxCompute spark 程序里如何访问redis?

大数据计算MaxCompute spark 程序里如何访问redis?


参考回答:

MC Spark访问外网,需要先提交申请。然后加上配置

https://help.aliyun.com/zh/maxcompute/user-guide/network-connection-process?spm=a2c4g.11186623.0.i47#p-1u9-ujh-ewv


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593571

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
141 0
zdl
|
28天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
144 56
|
1天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
21天前
|
SQL 关系型数据库 MySQL
体验使用DAS实现数据库SQL优化,完成任务可得羊羔绒加厚坐垫!
本实验介绍如何通过数据库自治服务DAS对RDS MySQL高可用实例进行SQL优化,包含购买RDS实例并创建数据库、数据导入、生成并优化慢SQL、执行优化后的SQL语句等实验步骤。完成任务,即可领取羊羔绒加厚坐垫,限量500个,先到先得。
|
27天前
|
存储 分布式计算 监控
大数据增加分区减少单个任务的负担
大数据增加分区减少单个任务的负担
30 1
|
1月前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
10天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
SQL 运维
Doris同一个SQL任务,前一天执行成功,第二天执行失败
Doris 动态分区 插入数据 同样的代码隔天运行一个成功一个失败
|
2月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
58 0
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
133 0

相关产品

  • 云原生大数据计算服务 MaxCompute