客户在哪儿AI的企业全历史行为数据与企业信息查询平台上的数据有何区别

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 客户在哪儿AI的企业全历史行为数据 VS 企业信息查询平台上的数据。

客户在哪儿AI全面提供服务已经快一个月了,我们收到了一些反馈。其中问的最多也是最有意思的问题就是,客户在哪儿AI与市面上其他几类服务于B端的科技产品有什么不同。既然如此,我们决定连出几篇文章把这件事给讲清楚。本期讲——客户在哪儿AI的企业全历史行为数据 VS 企业信息查询平台上的数据。

客户在哪儿AI生产的是企业全历史行为数据,同时还针对ToB企业,提供基于企业全历史行为数据的数据分析服务。具体来说,企业全历史行为数据按时间维度收录了企业及其各岗位负责人在什么地点、与什么人、做了什么事、收获了什么等所有可挖掘的行为。是连企业自己都没有的完整的企业行为数据库。当把很多的企业全历史行为数据聚在一起分析的时候,就能涌现出上帝视角般的营销洞察能力。其中的共性分析结果服务ToB市场部,个性分析结果服务销售部,整体洞察服务于决策层。

明确了客户在哪儿AI的企业全历史行为数据的概念之后,我们来介绍一下它与企业信息查询平台的异同:

1、数据不同:企业信息查询平台主要提供企业工商信息和企业信用信息;客户在哪儿AI提供的是企业的行为数据,确切说是,企业全历史行为数据。前者侧重状态,后者侧重行为。

2、数据来源不同:企业信息查询平台的数据大部分是抓取来的结构化数据;客户在哪儿AI是从全网的各种数据中挖掘出企业的行为数据,再经过复杂的实体统一,才能生产出企业全历史行为数据。并且,考虑到很多公司没有数据分析相关岗位,客户在哪儿AI还提供免费的数据分析服务。

3、数据用途不同:企业信息查询平台多用于了解企业概况和企业经营状态、信用等级等;客户在哪儿AI则专注于通过洞察企业行为来指导ToB营销获客。

接下来,我们来回答一位朋友的灵魂拷问,企业信息查询平台能不能干客户在哪儿AI的活儿?

首先,通过上面的差异分析,你应该知道了,只要是跟企业行为数据相关的活儿,就基本只有客户在哪儿AI能干。比如,分析用最少场次就能覆盖最多目标潜客的活动都有哪些,就必须要依托企业行为数据。而且,一个企业的状态数据可能很长时间都不会怎么变,但行为数据却日日更新。因为经营本身就是一个个行为的集合。

另外,工商信息还有一个比较尴尬的问题是,出于各种各样的经营需要,往往同一个企业实体,其工商税务法律法规和实际经营是两套信息体系。例如,法人代表与实际控制人、国民经济行业分类与企业自认行业、参保人员和企业实际员工等等。

有这样一个例子:有一个公司,其工商信息显示,它所属行业是科技推广和应用服务业,参保人数是44人。如果你是一个某大型人力资源管理系统的销售,你应该不会考虑这家公司了吧?但这家公司,是小米!

相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
44 6
|
14天前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
7天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
9天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
55 4
|
15天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
10天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
14天前
|
人工智能
热门 新 1024 云上见 AI大模型助力客户对话分析 2000个智能台灯等你来领
热门 新 1024 云上见 AI大模型助力客户对话分析 2000个智能台灯等你来领
53 3
|
15天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1