基于无线传感器网络的MCKP-MMF算法matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。

1.程序功能描述
基于流量估计,MCKP-MMF算法便可以找到本地MCKP-MMF的近似解。其基本思想与MMKP-MMF相似,但是相比之下,MCKP-MMF采取了更为简单的策略从而使之成为一种启发式算法并且运行更快。算法从最小配置开始,并将所有访问点初始化为活动状态。此后,算法在执行的每一轮中发现一个较好的部分解,并将相关的访问点置为停止状态,直至所有访问点都成为停止状态,算法终止。

1.png

某个访问点可能先后收到来自多个拥塞节点的重新设置影响半径的要求,此时为了满足带宽消耗最大的节点的带宽限制,访问点需要将其新影响半径设置为其中最小的一个。一种简单的方法是每次收到这样的请求之后,将其中包含的新影响半径与访问点当前影响半径比较,如果新影响半径较小则修改当前影响半径为新影响半径,否则访问点保持当前影响半径。这样作的一个副作用是访问点的影响半径将随时间增长而变小。从另一方面,节点由于仅通过本地信息为与之相关的访问点确定影响半径,可能无法得到访问点真正的最优影响半径。为了消除这个副作用并帮助访问点跳出本地最优状态从而更接近全局最优配置,每个访问点需要周期性的增加其影响半径。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序
```while(times <Stimes)
figure(2);
plot(Xn,Yn,'b.');
hold on;
plot(Xm,Ym,'r.');
hold on;

 times
 times    = times + 1;
 SATVs    = SATV*ones(1,N);
AI 代码解读

Tpk = zeros(M,1); %代价函数
NEXT_ptr = 0;
NEXT_Set = ones(1,M);

while(NEXT_ptr<= M)
%所有活动访问点半径均被增加且所得为合适解
%计算代价函数
for j = 1:M
for i1 = 1:N
d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
%判断是否在一定范围之内
if d <= Rs(j)
%进行资源分配
Tpk(j) = Tpk(j) + Requst(j,i1);
else
Tpk(j) = Tpk(j);
end
end
end

     [A,I]             = sort(Tpk);

     if A > 0
        %选择最小的一个
AI 代码解读

Tpk_min = A(1);
Tpk_ind = I(1);
NEXT_Set(Tpk_ind) = 0;
if feasible(A,rij) == 1
%没有被违反
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
if (NEXT_Set(Tpk_ind)) == 0
NEXT_ptr = NEXT_ptr;
else
NEXT_ptr = NEXT_ptr + 1;
end
else
%违反了,则直接退出进入下一个循环
NEXT_ptr = M+1;
end
else
%如果流量为0,则说明没有发生任何请求,其实半径自动递增
Tpk_min = A(1);
Tpk_ind = I(1);
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
end
end

 %多个拥塞节点的重新设置影响半径
 for j = 1:M
     %表示该访问点处于第1阶段
     if FLag(j) == 0
        %计算每个节点到访问点的距离
        for i1 = 1:N
            d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
            %判断是否在一定范围之内
            if d <= Rs(j)
               %进行资源分配
               SATVs(1,i1) = SATVs(1,i1) - Requst(j,i1);
            else
               SATVs(1,i1) = SATVs(1,i1); 
            end    
            %每次请求完之后,判断是否拥堵
            if SATVs(1,i1) <= 0%表示拥堵
AI 代码解读

saturated_state{j,i1} = [1,Rs',Xm(j),Ym(j),Xn(i1),Yn(i1)];
FLag(j) = 1;
else
saturated_state{j,i1} = [0,zeros(1,M),0,0,0,0];
FLag(j) = FLag(j);
end
end
end
%**
end
%绘制仿真结果
figure(3);
subplot(421);
plot(R(1,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点1半径请求变化');
subplot(422);
plot(R(2,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点2半径请求变化');
subplot(423);
plot(R(3,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点3半径请求变化');
subplot(424);
plot(R(4,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点4半径请求变化');
subplot(425);
plot(R(5,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点5半径请求变化');
subplot(426);
plot(R(6,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点6半径请求变化');
subplot(427);
plot(R(7,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点7半径请求变化');
subplot(428);
plot(R(8,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点8半径请求变化');
%绘制仿真结果
figure(4);
subplot(421);
plot(TPK(1,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点1代价函数');
subplot(422);
plot(TPK(2,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点2代价函数');
subplot(423);
plot(TPK(3,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点3代价函数');
subplot(424);
plot(TPK(4,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点4代价函数');
subplot(425);
plot(TPK(5,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点5代价函数');
subplot(426);
plot(TPK(6,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点6代价函数');
subplot(427);
plot(TPK(7,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点7代价函数');
subplot(428);
plot(TPK(8,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点8代价函数');
12_008m

```

4.本算法原理
算法的执行可以分为两个阶段。第一阶段是通常所谓的慢启动阶段,在该阶段,各个sink开始于最小半径的请求,然后以某种速度增加其请求半径,直到算法发现一个潜在的瓶颈节点,此时相关sink将收到消息。算法中initRadius过程负责确定每次增加请求半径。某个sink收到一个消息之后重新设置其请求半径为某一较小值以试图缓解拥塞。 resetRadius过程负责在收到消息之后计算新的请求半径。该sink随后进入算法的第二阶段。进入第二阶段的sink将周期性的试图增加其请求半径,以取得最优 max-min公平请求半径。此步骤由increaseRadius过程处理。这样增加的结果是,不久之后该sink再次收到消息并缩小请求半径,而后再次周期性增加。

    所有sink同时发出请求,并将初始半径设置为最小值。然后所有sink以同步方式增加请求半径直到网络中某一传感器节点上的数据流量饱和(该节点被称为瓶颈节点)。当某个传感器节点流量饱和时,覆盖该节点的所有sink停止增加其请求半径,但是其它sink继续增加其请求半径。当没有sink可以继续增加其请求半径时,算法结束。我们说此算法的解为最优解是因为该算法的解满足max-min公平性的同时被全局或局部最大化。
AI 代码解读
目录
打赏
0
1
1
0
213
分享
相关文章
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
41 10
|
22天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
29 1
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
基于自混合干涉测量系统的线展宽因子估计算法matlab仿真
本程序基于自混合干涉测量系统,使用MATLAB2022A实现线展宽因子(a因子)估计算法仿真。通过对比分析自由载流子效应、带间跃迁、带隙收缩等因素对a因子的影响,揭示其物理机制。核心代码分别计算了不同效应对a因子的贡献,并绘制相应曲线进行可视化展示。自混合干涉测量技术利用激光反馈效应实现物体物理量测量,而线展宽因子描述了激光输出频率随功率变化的敏感程度,是研究半导体激光器特性的重要参数。该算法为光学测量和激光器研究提供了有效工具。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问