基于无线传感器网络的MCKP-MMF算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。

1.程序功能描述
基于流量估计,MCKP-MMF算法便可以找到本地MCKP-MMF的近似解。其基本思想与MMKP-MMF相似,但是相比之下,MCKP-MMF采取了更为简单的策略从而使之成为一种启发式算法并且运行更快。算法从最小配置开始,并将所有访问点初始化为活动状态。此后,算法在执行的每一轮中发现一个较好的部分解,并将相关的访问点置为停止状态,直至所有访问点都成为停止状态,算法终止。

1.png

某个访问点可能先后收到来自多个拥塞节点的重新设置影响半径的要求,此时为了满足带宽消耗最大的节点的带宽限制,访问点需要将其新影响半径设置为其中最小的一个。一种简单的方法是每次收到这样的请求之后,将其中包含的新影响半径与访问点当前影响半径比较,如果新影响半径较小则修改当前影响半径为新影响半径,否则访问点保持当前影响半径。这样作的一个副作用是访问点的影响半径将随时间增长而变小。从另一方面,节点由于仅通过本地信息为与之相关的访问点确定影响半径,可能无法得到访问点真正的最优影响半径。为了消除这个副作用并帮助访问点跳出本地最优状态从而更接近全局最优配置,每个访问点需要周期性的增加其影响半径。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序
```while(times <Stimes)
figure(2);
plot(Xn,Yn,'b.');
hold on;
plot(Xm,Ym,'r.');
hold on;

 times
 times    = times + 1;
 SATVs    = SATV*ones(1,N);

Tpk = zeros(M,1); %代价函数
NEXT_ptr = 0;
NEXT_Set = ones(1,M);

while(NEXT_ptr<= M)
%所有活动访问点半径均被增加且所得为合适解
%计算代价函数
for j = 1:M
for i1 = 1:N
d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
%判断是否在一定范围之内
if d <= Rs(j)
%进行资源分配
Tpk(j) = Tpk(j) + Requst(j,i1);
else
Tpk(j) = Tpk(j);
end
end
end

     [A,I]             = sort(Tpk);

     if A > 0
        %选择最小的一个

Tpk_min = A(1);
Tpk_ind = I(1);
NEXT_Set(Tpk_ind) = 0;
if feasible(A,rij) == 1
%没有被违反
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
if (NEXT_Set(Tpk_ind)) == 0
NEXT_ptr = NEXT_ptr;
else
NEXT_ptr = NEXT_ptr + 1;
end
else
%违反了,则直接退出进入下一个循环
NEXT_ptr = M+1;
end
else
%如果流量为0,则说明没有发生任何请求,其实半径自动递增
Tpk_min = A(1);
Tpk_ind = I(1);
Rs(Tpk_ind) = Rs(Tpk_ind) + Step;
end
end

 %多个拥塞节点的重新设置影响半径
 for j = 1:M
     %表示该访问点处于第1阶段
     if FLag(j) == 0
        %计算每个节点到访问点的距离
        for i1 = 1:N
            d = sqrt( (Xn(i1) - Xm(j))^2 + (Yn(i1) - Ym(j))^2 );
            %判断是否在一定范围之内
            if d <= Rs(j)
               %进行资源分配
               SATVs(1,i1) = SATVs(1,i1) - Requst(j,i1);
            else
               SATVs(1,i1) = SATVs(1,i1); 
            end    
            %每次请求完之后,判断是否拥堵
            if SATVs(1,i1) <= 0%表示拥堵

saturated_state{j,i1} = [1,Rs',Xm(j),Ym(j),Xn(i1),Yn(i1)];
FLag(j) = 1;
else
saturated_state{j,i1} = [0,zeros(1,M),0,0,0,0];
FLag(j) = FLag(j);
end
end
end
%**
end
%绘制仿真结果
figure(3);
subplot(421);
plot(R(1,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点1半径请求变化');
subplot(422);
plot(R(2,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点2半径请求变化');
subplot(423);
plot(R(3,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点3半径请求变化');
subplot(424);
plot(R(4,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点4半径请求变化');
subplot(425);
plot(R(5,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点5半径请求变化');
subplot(426);
plot(R(6,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点6半径请求变化');
subplot(427);
plot(R(7,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点7半径请求变化');
subplot(428);
plot(R(8,:),'b','linewidth',2);
xlabel('TIMES');
ylabel('Radius');
grid on;
title('资源点8半径请求变化');
%绘制仿真结果
figure(4);
subplot(421);
plot(TPK(1,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点1代价函数');
subplot(422);
plot(TPK(2,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点2代价函数');
subplot(423);
plot(TPK(3,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点3代价函数');
subplot(424);
plot(TPK(4,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点4代价函数');
subplot(425);
plot(TPK(5,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点5代价函数');
subplot(426);
plot(TPK(6,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点6代价函数');
subplot(427);
plot(TPK(7,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点7代价函数');
subplot(428);
plot(TPK(8,10:end),'b','linewidth',2);
xlabel('TIMES');
ylabel('代价函数');
grid on;
title('资源点8代价函数');
12_008m

```

4.本算法原理
算法的执行可以分为两个阶段。第一阶段是通常所谓的慢启动阶段,在该阶段,各个sink开始于最小半径的请求,然后以某种速度增加其请求半径,直到算法发现一个潜在的瓶颈节点,此时相关sink将收到消息。算法中initRadius过程负责确定每次增加请求半径。某个sink收到一个消息之后重新设置其请求半径为某一较小值以试图缓解拥塞。 resetRadius过程负责在收到消息之后计算新的请求半径。该sink随后进入算法的第二阶段。进入第二阶段的sink将周期性的试图增加其请求半径,以取得最优 max-min公平请求半径。此步骤由increaseRadius过程处理。这样增加的结果是,不久之后该sink再次收到消息并缩小请求半径,而后再次周期性增加。

    所有sink同时发出请求,并将初始半径设置为最小值。然后所有sink以同步方式增加请求半径直到网络中某一传感器节点上的数据流量饱和(该节点被称为瓶颈节点)。当某个传感器节点流量饱和时,覆盖该节点的所有sink停止增加其请求半径,但是其它sink继续增加其请求半径。当没有sink可以继续增加其请求半径时,算法结束。我们说此算法的解为最优解是因为该算法的解满足max-min公平性的同时被全局或局部最大化。
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
20小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。