实时计算 Flink版产品使用问题之如何解决内存占用过大的问题

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?

Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?



参考答案:

Apache Flink CDC(Change Data Capture)在处理数据流时可能会积累大量的内存,尤其是当捕获的数据量较大或处理过程中存在状态存储时。Flink CDC任务取消后,如果内存没有及时释放,可能是因为以下几个原因:

  1. 状态后置清理:
  • Flink在取消任务后,会异步清理task的状态,包括checkpoint状态和managed memory中的数据结构。这部分清理过程可能需要一定时间,并且在极端情况下,可能不会立即回收所有内存。
  1. 堆外内存(Off-heap Memory):
  • 如果Flink作业使用了堆外内存(例如 RocksDB状态后端),内存释放可能更加复杂,因为它不受JVM垃圾回收机制管理,需要Flink自身去释放这部分资源。
  1. 资源泄漏:
  • 如果存在资源泄露,如未能正确关闭网络连接、文件流或其他系统资源,可能导致内存无法正常释放。
  1. Flink内部缓存或队列:
  • CDC组件可能在内部维护了一些缓存或者队列,即便任务取消,这些结构如果没有被正确清空或关闭,也可能导致内存占用较高。

解决Flink CDC内存占用过大的问题,可以尝试以下措施:

  • 等待资源释放:给Flink一段合理的时间自行清理资源。
  • 检查和优化状态后端配置:确保状态后端配置合理,例如 RocksDB的配置,包括内存大小和checkpoint策略。
  • 确认作业终止后状态清理:如果使用了checkpoint,确保作业在停止后完成了checkpoint的清理工作。
  • 排查是否存在资源泄漏:审查代码和配置,确保所有资源在任务取消或失败时都能得到妥善清理和关闭。
  • 手动触发GC:在诊断阶段,可以尝试触发Java垃圾收集器来回收堆内存,但这不是长期解决方案。
  • 重启TaskManager或整个集群:在必要时,重启受影响的TaskManager或整个Flink集群可以彻底释放资源,但这应该是最后的手段,因为会导致服务中断。

总的来说,优化Flink CDC内存管理的关键在于合理配置和有效监控任务运行状态。如果问题持续存在,建议深入分析Flink的日志和监控指标,以便定位具体的问题根源。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592260



问题二:Flink CDC里目前社区版本cdc支持整库同步了么?

Flink CDC里目前社区版本cdc支持整库同步了么?source是PG,sink是hudi。 后面有计划支持么?



参考答案:

目前支持mysql整库同步到starrocks/doris。参考这个:

https://github.com/ververica/flink-cdc-connectors/issues/2861



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592246



问题三:Flink CDC里为什么使用yarn-session模式这样启用不了checkpoint吗?

Flink CDC里flink run -d -D yarn.application.id=application_xxxx -D execution.checkpointing.interval=60000,flink1.16版本为什么使用yarn-session模式这样启用不了checkpoint吗?



参考答案:

在 Apache Flink 1.16 版本中,在 YARN session 模式下运行 Flink 应用程序,并尝试通过 -D 参数设置 checkpoint 间隔,需要注意以下几点:

  1. YARN Session 和 Checkpoint 配置:
    在启动 yarn-session 模式时,你应该先创建一个持久化的 Flink YARN session,然后在提交作业时通过作业的 conf/flink-conf.yaml 或者直接在代码中指定 checkpoint 相关配置。不过,有时候也可以通过 Java API 或命令行参数临时覆盖部分配置项。
    -D execution.checkpointing.interval=60000 这种方式是在命令行上为作业指定自定义配置,但它是否能生效取决于 Flink 是否允许在运行时动态覆盖全局或作业级别的 checkpoint interval 设置。
  2. 正确设置 Checkpoint 间隔:
    如果要在命令行提交作业时设置 checkpoint 间隔,确保使用正确的配置键名,对于 checkpoint 间隔应该是:
-D jobmanager.checkpoints.interval=60000
  1. 而不是 execution.checkpointing.interval,虽然在某些版本中两者可能可以互换,但在不同版本间配置键名可能会有所差异。
  2. 配置生效范围:
    当你在 Flink 1.16 中通过 -D 参数设置 checkpoint 间隔时,确保这些参数是在提交作业到已经启动的 YARN session 时传递的,而不是在启动 yarn-session 本身时。这是因为启动 session 时不一定会处理作业级别的具体配置。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592243



问题四:在Flink-CDC整库同步时,若某表大量更新记录(如几千万条),是否会导致其他表同步出现延迟?

在Flink-CDC整库同步时,若某表大量更新记录(如几千万条),是否会导致其他表同步出现延迟?对于这种场景,除了提升资源配置和增加并行度,是否有其他解决方案?特别是在源端大批量修改数据时,如何避免影响到CDC任务中其他表的同步时效?



参考答案:

一般不会有这种场景吧,mysql修改完就得数个小时吧,你都不用考虑flinkcdc延不延迟。只要没太大事务基本延迟都很低,就像是mysql主从。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592240



问题五:flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?

flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?



参考答案:

参考本图,不完全是压测的场景,还要考虑下游数据写入能力,增量数据只有1个并行度等情况。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592237

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
24天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
816 17
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
21天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
13天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
47 0
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
70 1
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
44 0
|
3月前
|
运维 分布式计算 监控
评测报告:阿里云实时计算Flink版
本评测主要针对阿里云实时计算Flink版在用户行为分析中的应用。作为一名数据分析师,我利用该服务处理了大量日志数据,包括用户点击流和登录行为。Flink的强大实时处理能力让我能够迅速洞察用户行为变化,及时调整营销策略。此外,其卓越的性能和稳定性显著降低了运维负担,提升了项目效率。产品文档详尽且易于理解,但建议增加故障排查示例。
|
3月前
|
机器学习/深度学习 运维 监控
阿里云实时计算Flink版体验评测
阿里云实时计算Flink版提供了完善的产品内引导和丰富文档,使初学者也能快速上手。产品界面引导清晰,内置模板简化了流处理任务。官方文档全面,涵盖配置、开发、调优等内容。此外,该产品在数据开发和运维方面表现优秀,支持灵活的作业开发和自动化运维。未来可增强复杂事件处理、实时可视化展示及机器学习支持,进一步提升用户体验。作为阿里云大数据体系的一部分,它能与DataWorks、MaxCompute等产品无缝联动,构建完整的实时数据处理平台。

相关产品

  • 实时计算 Flink版
  • 下一篇
    无影云桌面