实时计算 Flink版产品使用问题之在使用FlinkCDC与PostgreSQL进行集成时,该如何配置参数

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC首次全量同步几百万数据,状态后端增量方式的rocksdb,正常的吗?

Flink CDC首次全量同步几百万数据,状态后端增量方式的rocksdb,目前Checkpointed Data Size 基本接近Full Checkpoint Data Size大小,正常的吗?ck耗时也很长,请问可以从哪些方面优化优化?



参考答案:

Flink CDC首次全量同步几百万数据,状态后端增量方式的rocksdb,目前Flink CDC首次全量同步几百万数据,状态后端增量方式的rocksdb,目前Checkpointed Data Size基本接近Full Checkpoint Data Size大小,这是正常的。ck耗时也很长,可以从以下几个方面优化:

  1. 调整checkpoint间隔时间,缩短checkpoint时间。
  2. 调整statebackend的大小,增加statebackend的容量。
  3. 调整并行度,提高处理速度。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587176



问题二:再确认下Flink CDC中, 解析100个库的binlog的账号密码,需要哪些权限,只读行不行?

再确认下Flink CDC中, 解析100个库的binlog的账号密码,需要哪些权限,只读行不行?



参考答案:

官方网站写的很清楚 https://ververica.github.io/flink-cdc-connectors/master/



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587175



问题三:问个Flink CDC问题,如果我要把100个库合到一个库,那flink需要100个库权限?

问个Flink CDC问题,如果我要把100个库合到一个库,那flink需要100个库权限?



参考答案:

给个superadmin就行了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587173



问题四:我问一下flink-cdc postgresql应该配置哪个参数?

我问一下flink-cdc postgresql的配置只需要最新的数据不需要执行快照,应该配置哪个参数?



参考答案:

2.4



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587172



问题五:各位有没有遇到过spark sql查询hudi 数据时没有办法查到flink cdc ?

各位有没有遇到过spark sql查询hudi 数据时没有办法查到flink cdc 同步到hudi实时数据的变化,用hive是没有问题的。但是我重开一个spark sql客户端数据就能发现变化了?



参考答案:

应该是 Spark 有缓存,设置 spark.sql.filesourceTableRelationCacheSize = 0 试下



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587171

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1382 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
15天前
|
Oracle 安全 关系型数据库
【赵渝强老师】PostgreSQL的参数文件
PostgreSQL数据库的四个主要参数文件包括:`postgresql.conf`(主要配置文件)、`pg_hba.conf`(访问控制文件)、`pg_ident.conf`(用户映射文件)和`postgresql.auto.conf`(自动保存修改后的参数)。视频讲解和详细说明帮助理解各文件的作用。
83 19
|
5天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
171 56
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
77 1
|
3月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
90 1
|
4月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
708 2
Flink CDC:新一代实时数据集成框架

相关产品

  • 实时计算 Flink版