ODPS开发大全:进阶篇(1)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: ODPS开发大全:进阶篇

本文旨在收集整理ODPS开发中入门及进阶级知识,尽可能涵盖大多数ODPS开发问题,成为一本mini百科全书,后续也会持续更新。希望通过笔者的梳理和理解,帮助刚接触ODPS开发的同学快速上手。

本系列分为两部分:入门篇进阶篇

ODPS开发大全:入门篇


常用参数设置


常用的调整无外乎调整map、join、reduce的个数,map、join、reduce的内存大小。


以ODPS的参数设置为例,参数可能因版本不同而略有差异。


参数类型

具体使用

  1. Map设置

set odps.sql.mapper.cpu=100

作用:设置处理Map Task每个Instance的CPU数目,默认为100,在[50,800]之间调整。场景:某些任务如果特别耗计算资源的话,可以适当调整Cpu数目。对于大多数Sql任务来说,一般不需要调整Cpu个数的。

set odps.sql.mapper.memory=1024

作用:设定Map Task每个Instance的Memory大小,单位M,默认1024M,在[256,12288]之间调整。场景:当Map阶段的Instance有Writer Dumps时,可以适当的增加内存大小,减少Dumps所花的时间。

set odps.sql.mapper.merge.limit.size=64

作用:设定控制文件被合并的最大阈值,单位M,默认64M,在[0,Integer.MAX_VALUE]之间调整。场景:当Map端每个Instance读入的数据量不均匀时,可以通过设置这个变量值进行小文件的合并,使得每个Instance的读入文件均匀。一般会和odps.sql.mapper.split.size这个参数结合使用。

set odps.sql.mapper.split.size=256

作用:设定一个Map的最大数据输入量,可以通过设置这个变量达到对Map端输入的控制,单位M,默认256M,在[1,Integer.MAX_VALUE]之间调整。场景:当每个Map Instance处理的数据量比较大,时间比较长,并且没有发生长尾时,可以适当调小这个参数。如果有发生长尾,则结合odps.sql.mapper.merge.limit.size这个参数设置每个Map的输入数量。

2. Join设置

set odps.sql.joiner.instances=-1

作用: 设定Join Task的Instance数量,默认为-1,在[0,2000]之间调整。不走HBO优化时,ODPS能够自动设定的最大值为1111,手动设定的最大值为2000,走HBO时可以超过2000。场景:每个Join Instance处理的数据量比较大,耗时较长,没有发生长尾,可以考虑增大使用这个参数。

set odps.sql.joiner.cpu=100

作用: 设定Join Task每个Instance的CPU数目,默认为100,在[50,800]之间调整。场景:某些任务如果特别耗计算资源的话,可以适当调整CPU数目。对于大多数SQL任务来说,一般不需要调整CPU。

set odps.sql.joiner.memory=1024

作用:设定Join Task每个Instance的Memory大小,单位为M,默认为1024M,在[256,12288]之间调整。场景:当Join阶段的Instance有Writer Dumps时,可以适当的增加内存大小,减少Dumps所花的时间。

3. Reduce设置

set odps.sql.reducer.instances=-1

作用: 设定Reduce Task的Instance数量,手动设置区间在[1,99999]之间调整。不走HBO优化时,ODPS能够自动设定的最大值为1111,手动设定的最大值为99999,走HBO优化时可以超过99999。场景:每个Join Instance处理的数据量比较大,耗时较长,没有发生长尾,可以考虑增大使用这个参数。

set odps.sql.reducer.cpu=100

作用:设定处理Reduce Task每个Instance的Cpu数目,默认为100,在[50,800]之间调整。场景:某些任务如果特别耗计算资源的话,可以适当调整Cpu数目。对于大多数Sql任务来说,一般不需要调整Cpu。

set odps.sql.reducer.memory=1024

作用:设定Reduce Task每个Instance的Memory大小,单位M,默认1024M,在[256,12288]之间调整。场景:当Reduce阶段的Instance有Writer Dumps时,可以适当的增加内存的大小,减少Dumps所花的时间。

上面这些参数虽然好用,但是也过于简单暴力,可能会对集群产生一定的压力。特别是在集群整体资源紧张的情况下,增加资源的方法可能得不到应有的效果,随着资源的增大,等待资源的时间变长的风险也随之增加,导致效果不好!因此请合理的使用资源参数!

4. 小文件合并参数

set odps.merge.cross.paths=true|false

作用:设置是否跨路径合并,对于表下面有多个分区的情况,合并过程会将多个分区生成独立的Merge Action进行合并,所以对于odps.merge.cross.paths设置为true,并不会改变路径个数,只是分别去合并每个路径下的小文件。

set odps.merge.smallfile.filesize.threshold = 64

作用:设置合并文件的小文件大小阀值,文件大小超过该阀值,则不进行合并,单位为M,可以不设,不设时,则使用全局变量odps_g_merge_filesize_threshold,该值默认为32M,设置时必须大于32M。

set odps.merge.maxmerged.filesize.threshold = 256

作用:设置合并输出文件量的大小,输出文件大于该阀值,则创建新的输出文件,单位为M,可以不设,不设时,则使用全局变odps_g_max_merged_filesize_threshold,该值默认为256M,设置时必须大于256M。

set odps.merge.max.filenumber.per.instance = 10000

作用:设置合并Fuxi Job的单个Instance允许合并的小文件个数,控制合并并行的Fuxi Instance数,可以不设,不设时,则使用全局变量odps_g_merge_files_per_instance,该值默认为100,在一个Merge任务中,需要的Fuxi Instance个数至少为该目录下面的总文件个数除以该限制。

set odps.merge.max.filenumber.per.job = 10000

作用:设置合并最大的小文件个数,小文件数量超过该限制,则超过限制部分的文件忽略,不进行合并,可以不设,不设时,则使用全局变量odps_g_max_merge_files,该值默认为10000。

5. UDF相关参数

set odps.sql.udf.jvm.memory=1024

作用: 设定UDF JVM Heap使用的最大内存,单位M,默认1024M,在[256,12288]之间调整。场景:某些UDF在内存计算、排序的数据量比较大时,会报内存溢出错误,这时候可以调大该参数,不过这个方法只能暂时缓解,还是需要从业务上去优化。

set odps.sql.udf.timeout=1800

作用:设置UDF超时时间,默认为1800秒,单位秒。[0,3600]之间调整。

set odps.sql.udf.python.memory=256

作用:设定UDF python 使用的最大内存,单位M,默认256M。[64,3072]之间调整。

set odps.sql.udf.optimize.reuse=true/false

作用:开启后,相同的UDF函数表达式,只计算一次,可以提高性能,默认为True。

set odps.sql.udf.strict.mode=false/true

作用:True为金融模式,False为淘宝模式,控制有些函数在遇到脏数据时是返回NULL还是抛异常,True是抛出异常,False是返回null。

6. Mapjoin设置

set odps.sql.mapjoin.memory.max=512

作用:设置Mapjoin时小表的最大内存,默认512,单位M,[128,2048]之间调整。

7. 动态分区设置

set odps.sql.reshuffle.dynamicpt=true/false

作用:默认true,用于避免拆分动态分区时产生过多小文件。如果生成的动态分区个数只会是很少几个,设为false避免数据倾斜。

8. 数据倾斜设置

set odps.sql.groupby.skewindata=true/false

作用:开启Group By优化。

set odps.sql.skewjoin=true/false

作用:开启Join优化,必须设置odps.sql.skewinfo 才有效。


常用内建函数


常用内建函数大概分为这几类,这边我们挑选一些重点的函数进行说明。


函数类型

说明

日期函数

支持处理DATE、DATETIME、TIMESTAMP等日期类型数据,实现加减日期、计算日期差值、提取日期字段、获取当前时间、转换日期格式等业务处理能力。

数学函数

支持处理BIGINT、DOUBLE、DECIMAL、FLOAT等数值类型数据,实现转换进制、数学运算、四舍五入、获取随机数等业务处理能力。

窗口函数

支持在指定的开窗列中,实现求和、求最大最小值、求平均值、求中间值、数值排序、数值偏移、抽样等业务处理能力。

聚合函数

支持将多条输入记录聚合成一条输出值,实现求和、求平均值、求最大最小值、求平均值、参数聚合、字符串连接等业务处理能力。

字符串函数

支持处理STRING类型字符串,实现截取字符串、替换字符串、查找字符串、转换大小写、转换字符串格式等业务处理能力。

复杂类型函数

支持处理MAP、ARRAY、STRUCT及JSON类型数据,实现去重元素、聚合元素、元素排序、合并元素等业务处理能力。

加密函数

支持处理STRING、BINARY类型的表数据,实现加密、解密等业务处理能力。

其他函数

除上述函数之外,提供支持其他业务场景的函数。


 日期函数


函数名

具体操作

  1. 获取当前日期7天内的日期:

SELECTDATEADD(GETDATE(),-7,'dd');

TO_CHAR(DATEADD(GETDATE(),-7,'dd'),'yyyymmdd');

2. DATEADD(指定日期加减):

SELECT DATEADD(GETDATE(),1,"dd"); //2021-01-09 10:48:40 GETDATE()返回值是2021-01-08 10:48:40

SELECT DATEADD(GETDATE(),1,"mm");//2021-02-08 10:49:24 GETDATE()返回值是2021-01-08 10:49:24

3. DATEDIFF(计算两个日期的差值):

datediff(end, start, 'dd') = 1

datediff(end, start, 'mm') = 1

datediff(end, start, 'yyyy') = 1

datediff(end, start, 'hh') = 1

4. DATEPART(返回指定日期的年/月/日):

SELECT DATEPART(GETDATE(),'mm');

SELECT DATEPART(GETDATE(),'yyyy');

SELECT DATEPART(GETDATE(),'dd');

SELECT DATEPART(GETDATE(),'hh');

5. DATETRUNC(截取时间):

datetrunc(datetime '2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00:00:00

datetrunc(datetime '2011-12-07 16:28:46', 'month') = 2011-12-01 00:00:00

datetrunc(datetime '2011-12-07 16:28:46', 'DD') = 2011-12-07 00:00:00

6. TO_CHAR 函数

使用方式 to_char(要处理的日期,日期格式)

推荐用法:2018-01-11 10:00:00 格式 ,处理为指定格式的日期字符串

效果:处理为yyyymmdd的日期格式,类型为字符串

to_char('2018-01-11 10:00:00','yyyymmdd') as date_3 

to_char('2018-01-11 10:00:00','yyyymmdd hh:mi:ss') as date_5 

to_char('2018-01-11 10:00:00','yyyy-mm-dd hh:mi:ss') as date_6

to_char('2018-01-11 10:00:00','yyyy-mm-dd 00:00:00') as date_8 

to_char('2018-01-11 10:00:00','yyyy-mm-01 23:59:59') as date_9 

7. TO_DATE函数

使用方式:to_date(datetime,format)

推荐用法:根据时间的格式,适当调整format的模版

效果:处理20180111、2018-01-11、2018-01-11 10:00:00

to_char('2018-01-11 10:00:00','yyyymmdd') as date_3

to_char('2018-01-11 10:00:00','yyyymmdd hh:mi:ss') as date_5

to_char('2018-01-11 10:00:00','yyyy-mm-dd hh:mi:ss') as date_6

to_char('2018-01-11 10:00:00','yyyy-mm-dd 00:00:00') as date_8

8. UNIX时间戳转换

函数:datetime from_unixtime(bigint unixtime) 支持秒

from_unixtime(123456789) = 1973-11-30 05:33:09

函数: from_utc_timestamp(bigint unixtime,string timezone) 支持毫秒

SELECT from_utc_timestamp(1501557840000 ,'GMT') ;

--返回:2017-08-01 04:24:00

9. DATE转UNIX时间戳

函数:bigint unix_timestamp(datetime date)

select unix_timestamp(datetime '2019-09-20 01:00:00'); 

--返回1568912400

select unix_timestamp('2019-09-20 01:00:00'); 

--返回1568912400


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何开发ODPS Spark任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
SQL 分布式计算 大数据
代码编码原则和规范大数据开发
此文档详细规定了SQL代码的编写规范,包括代码的清晰度,执行效率,以及注释的必要性。它强调所有SQL关键字需统一使用大写或小写,并禁止使用select *操作。此外,还规定了代码头部的信息模板,字段排列方式,INSERT, SELECT子句的格式,运算符的使用,CASE语句编写规则,查询嵌套规范,表别名定义,以及SQL注释的添加方法。这些规则有助于提升代码的可读性和可维护性。
49 0
|
3月前
|
SQL 分布式计算 大数据
大数据开发SQL代码编码原则和规范
这段SQL编码原则强调代码的功能完整性、清晰度、执行效率及可读性,通过统一关键词大小写、缩进量以及禁止使用模糊操作如select *等手段提升代码质量。此外,SQL编码规范还详细规定了代码头部信息、字段与子句排列、运算符前后间隔、CASE语句编写、查询嵌套、表别名定义以及SQL注释的具体要求,确保代码的一致性和维护性。
99 0
|
5月前
|
SQL 分布式计算 MaxCompute
SQL开发问题之对于ODPS中的UNION操作,执行计划的问题如何解决
SQL开发问题之对于ODPS中的UNION操作,执行计划的问题如何解决
|
5月前
|
存储 分布式计算 MaxCompute
构建NLP 开发问题之如何支持其他存储介质(如 HDFS、ODPS Volumn)在 transformers 框架中
构建NLP 开发问题之如何支持其他存储介质(如 HDFS、ODPS Volumn)在 transformers 框架中
|
4月前
|
数据可视化
Echarts数据可视化开发| 智慧数据平台
Echarts数据可视化开发| 智慧数据平台
|
4月前
|
数据可视化
Echarts数据可视化大屏开发| 大数据分析平台
Echarts数据可视化大屏开发| 大数据分析平台
|
4月前
|
分布式计算 大数据 Java
Scala 入门指南:从零开始的大数据开发
Scala 入门指南:从零开始的大数据开发
|
5月前
|
分布式计算 自然语言处理 MaxCompute
构建NLP 开发问题之如何在数据加载框架中实现从两个ODPS表中分别读取正样本和负样本,并在batch内以1:1的方式混合
构建NLP 开发问题之如何在数据加载框架中实现从两个ODPS表中分别读取正样本和负样本,并在batch内以1:1的方式混合
|
5月前
|
SQL Java 大数据
开发与运维应用问题之大数据SQL数据膨胀如何解决
开发与运维应用问题之大数据SQL数据膨胀如何解决
下一篇
无影云桌面