算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

简介: **RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。**CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。**Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。**BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。

1. RNN(Recurrent Neural Network)

时间轴

1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。

关键技术

  • 循环结构
  • 序列处理
  • 长短时记忆网络(LSTM)和门控循环单元(GRU)

核心原理

RNN 通过循环结构让网络记住以前的输入信息,使其能够处理序列数据。每个节点不仅接收当前输入,还接收前一个节点的输出,从而形成记忆能力。

创新点

RNN 的创新点在于其循环结构,这使其能处理时间序列数据。但原始 RNN 容易出现梯度消失问题,后来的 LSTM 和 GRU 模型通过引入门控机制,极大地改善了这一问题。

适用数据

  • 时间序列数据
  • 语音信号
  • 文本数据

应用场景

  • 语言模型
  • 语音识别
  • 时间序列预测

经典案例

苹果的 Siri 和 Google 的语音助手都使用了基于 RNN 的技术来进行语音识别和处理。

2. CNN(Convolutional Neural Network)

时间轴

1989年,CNN 由 Yann LeCun 等人提出,主要用于图像处理。

关键技术

  • 卷积层
  • 池化层
  • 全连接层

核心原理

CNN 通过卷积层提取图像的局部特征,池化层进行降维处理,全连接层最终进行分类。卷积操作通过滤波器在图像上滑动,捕捉不同的特征。

创新点

CNN 的创新点在于卷积层的使用,使其能够有效提取图像的空间特征,大大减少了参数数量,提高了计算效率。

适用数据

  • 图像数据
  • 视频数据

应用场景

  • 图像分类
  • 物体检测
  • 图像生成

经典案例

LeNet-5 是最早的 CNN 之一,被用来进行手写数字识别,并取得了显著的成果。

3. Transformer

时间轴

2017年,Google 发布了 Transformer 模型,极大地提升了自然语言处理的效率。

关键技术

  • 自注意力机制
  • 编码器-解码器架构
  • 多头注意力机制

核心原理

Transformer 通过自注意力机制,可以在处理序列数据时并行计算,从而大大提升了效率。编码器处理输入序列,解码器生成输出序列,自注意力机制使得模型能够关注到序列中的重要信息。

创新点

Transformer 摒弃了传统 RNN 的循环结构,通过自注意力机制和并行处理,实现了更快的训练速度和更好的效果。

适用数据

  • 文本数据
  • 语言数据

应用场景

  • 机器翻译
  • 文本生成
  • 情感分析

经典案例

Google 的神经机器翻译系统(GNMT)使用了 Transformer 技术,实现了高质量的机器翻译。

4. BERT(Bidirectional Encoder Representations from Transformers)

时间轴

2018年,Google 发布了 BERT 模型,大大提升了自然语言处理任务的表现。

关键技术

  • 双向编码器
  • 预训练和微调
  • 掩码语言模型

核心原理

BERT 通过双向编码器同时考虑上下文信息,使用掩码语言模型在预训练阶段预测被掩盖的词语,然后进行任务特定的微调。

创新点

BERT 的创新在于其双向性和预训练方法,使得模型在各种 NLP 任务中都表现优异,尤其是在需要上下文理解的任务中。

适用数据

  • 文本数据

应用场景

  • 问答系统
  • 文本分类
  • 命名实体识别

经典案例

Google 搜索引擎在 2019 年开始使用 BERT 来理解用户查询,提高搜索结果的相关性。

5. GPT(Generative Pre-trained Transformer)

时间轴

2018年,OpenAI 发布了 GPT 模型,此后不断迭代,GPT-2 和 GPT-3 进一步提升了文本生成能力。

关键技术

  • 自回归语言模型
  • 预训练和微调
  • 大规模训练数据

核心原理

GPT 通过自回归方式生成文本,使用大量数据进行预训练,然后在特定任务上微调。模型基于 Transformer 架构,能够生成高质量的连贯文本。

创新点

GPT 的创新在于其生成能力和规模,通过预训练和大规模数据,能够生成自然流畅的文本,几乎达到人类水平。

适用数据

  • 文本数据

应用场景

  • 文本生成
  • 对话系统
  • 内容创作

经典案例

OpenAI 的 GPT-3 已经被广泛应用于各种文本生成任务,如代码生成、新闻撰写和对话机器人。以上便是 RNN、CNN、Transformer、BERT 和 GPT 五大深度学习模型的简介。它们各自在不同领域中展现了强大的能力和广泛的应用,推动了人工智能技术的发展和应用。

目录
相关文章
|
4天前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
31 21
|
10天前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
266 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
25天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
69 13
|
2月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
113 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
1月前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。
|
2月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
96 3

热门文章

最新文章