实战算法的基础入门(2)

简介: 实战算法的基础入门

 中位数(单向二分查找)


  • 10MB内存,找到100亿整数的中位数


  1. 内存够:内存够还慌什么啊,直接把100亿个全部排序了,你用冒泡都可以...然后找到中间那个就可以了。但是你以为面试官会给你内存??
  2. 内存不够:题目说是整数,我们认为是带符号的int,所以4字节,占32位。

假设100亿个数字保存在一个大文件中,依次读一部分文件到内存(不超过内存的限制),将每个数字用二进制表示,比较二进制的最高位(第32位,符号位,0是正,1是负),如果数字的最高位为0,则将这个数字写入file_0文件中;如果最高位为1,则将该数字写入file_1文件中。

从而将100亿个数字分成了两个文件,假设file_0文件中有60亿个数字,file_1文件中有40亿个数字。那么中位数就在file_0文件中,并且是file_0文件中所有数字排序之后的第10亿个数字。(file_1中的数都是负数,file_0中的数都是正数,也即这里一共只有40亿个负数,那么排序之后的第50亿个数一定位于file_0中)

现在,我们只需要处理file_0文件了(不需要再考虑file_1文件)。对于file_0文件,同样采取上面的措施处理:将file_0文件依次读一部分到内存(不超内存限制),将每个数字用二进制表示,比较二进制的次高位(第31位),如果数字的次高位为0,写入file_0_0文件中;如果次高位为1,写入file_0_1文件中。

现假设file_0_0文件中有30亿个数字,file_0_1中也有30亿个数字,则中位数就是:file_0_0文件中的数字从小到大排序之后的第10亿个数字。

抛弃file_0_1文件,继续对file_0_0文件根据次次高位(第30位)划分,假设此次划分的两个文件为:file_0_0_0中有5亿个数字,file_0_0_1中有25亿个数字,那么中位数就是file_0_0_1文件中的所有数字排序之后的 第5亿个数。

按照上述思路,直到划分的文件可直接加载进内存时,就可以直接对数字进行快速排序,找出中位数了。


 短域名系统(缓存)


  • 设计短域名系统,将长URL转化成短的URL.


  1. 利用放号器,初始值为0,对于每一个短链接生成请求,都递增放号器的值,再将此值转换为62进制(a-zA-Z0-9),比如第一次请求时放号器的值为0,对应62进制为a,第二次请求时放号器的值为1,对应62进制为b,第10001次请求时放号器的值为10000,对应62进制为sBc。
  2. 将短链接服务器域名与放号器的62进制值进行字符串连接,即为短链接的URL,比如:t.cn/sBc。
  3. 重定向过程:生成短链接之后,需要存储短链接到长链接的映射关系,即sBc ->URL,浏览器访问短链接服务器时,根据URL Path取到原始的链接,然后进行302重定向。映射关系可使用K-V存储,比如Redis或Memcache。


 海量评论入库(消息队列)


假设有这么一个场景,有一条新闻,新闻的评论量可能很大,如何设计评论的读和写

前端页面直接给用户展示、通过消息队列异步方式入库

读可以进行读写分离、同时热点评论定时加载到缓存


 在线/并发用户数(Redis)


  • 显示网站的用户在线数的解决思路


  1. 维护在线用户表
  2. 使用Redis统计


  • 显示网站并发用户数


  1. 每当用户访问服务时,把该用户的ID写入ZSORT队列,权重为当前时间;
  2. 根据权重(即时间)计算一分钟内该机构的用户数Zrange;
  3. 删掉一分钟以上过期的用户Zrem;


 热门字符串(前缀树)


假设目前有1000w个记录(这些查询串的重复度比较高,虽然总数是1000w,但如果除去重复后,则不超过300w个)。请统计最热门的10个查询串,要求使用的内存不能超过1G。(一个查询串的重复度越高,说明查询它的用户越多,也就越热门。)

  • HashMap法


虽然字符串总数比较多,但去重后不超过300w,因此,可以考虑把所有字符串及出现次数保存在一个HashMap中,所占用的空间为300w*(255+4)≈777M(其中,4 表示整数占用的4个字节)。由此可见,1G的内存空间完全够用。


  • 思路如下


首先,遍历字符串,若不在map中,直接存入map,value记为1;若在map中,则把对应的value加1,这一步时间复杂度O(N)

接着遍历map,构建一个10个元素的小顶堆,若遍历到的字符串的出现次数大于堆顶字符串的出现次数,则进行替换,并将堆调整为小顶堆。

遍历结束后,堆中10个字符串就是出现次数最多的字符串。这一步时间复杂度O(Nlog10)


  • 前缀树法


当这些字符串有大量相同前缀时,可以考虑使用前缀树来统计字符串出现的次数,树的结点保存字符串出现次数,0表示没有出现。


  • 思路如下


在遍历字符串时,在前缀树中查找,如果找到,则把结点中保存的字符串次数加1,否则为这个字符串构建新结点,构建完成后把叶子结点中字符串的出现次数置为1。

最后依然使用小顶堆来对字符串的出现次数进行排序。


 红包算法


线性切割法,一个区间切N-1刀。越早越多

二倍均值法,【0~剩余金额 / 剩余人数*2】中随机,相对均匀

image.png

image.png


 手写快排


public class QuickSort {
    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    /* 常规快排 */
    public static void quickSort1(int[] arr, int L , int R) {
        if (L > R)  return;
        int M = partition(arr, L, R);
        quickSort1(arr, L, M - 1);
        quickSort1(arr, M + 1, R);
    }
    public static int partition(int[] arr, int L, int R) {
        if (L > R) return -1;
        if (L == R) return L;
        int lessEqual = L - 1;
        int index = L;
        while (index < R) {
            if (arr[index] <= arr[R])
                swap(arr, index, ++lessEqual);
            index++;
        }
        swap(arr, ++lessEqual, R);
        return lessEqual;
    }
    /* 荷兰国旗 */
    public static void quickSort2(int[] arr, int L, int R) {
        if (L > R)  return;
        int[] equalArea = netherlandsFlag(arr, L, R);
        quickSort2(arr, L, equalArea[0] - 1);
        quickSort2(arr, equalArea[1] + 1, R);
    }
    public static int[] netherlandsFlag(int[] arr, int L, int R) {
        if (L > R) return new int[] { -1, -1 };
        if (L == R) return new int[] { L, R };
        int less = L - 1;
        int more = R;
        int index = L;
        while (index < more) {
            if (arr[index] == arr[R]) {
                index++;
            } else if (arr[index] < arr[R]) {
                swap(arr, index++, ++less);
            } else {
                swap(arr, index, --more);
            }
        }
        swap(arr, more, R);
        return new int[] { less + 1, more };
    }

    // for test
    public static void main(String[] args) {
        int testTime = 1;
        int maxSize = 10000000;
        int maxValue = 100000;
        boolean succeed = true;
        long T1=0,T2=0;
        for (int i = 0; i < testTime; i++) {
            int[] arr1 = generateRandomArray(maxSize, maxValue);
            int[] arr2 = copyArray(arr1);
            int[] arr3 = copyArray(arr1);
//            int[] arr1 = {9,8,7,6,5,4,3,2,1};
            long t1 = System.currentTimeMillis();
            quickSort1(arr1,0,arr1.length-1);
            long t2 = System.currentTimeMillis();
            quickSort2(arr2,0,arr2.length-1);
            long t3 = System.currentTimeMillis();
            T1 += (t2-t1);
            T2 += (t3-t2);
            if (!isEqual(arr1, arr2) || !isEqual(arr2, arr3)) {
                succeed = false;
                break;
            }
        }
        System.out.println(T1+" "+T2);
//        System.out.println(succeed ? "Nice!" : "Oops!");
    }

    private static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) ((maxValue + 1) * Math.random()) 
                        - (int) (maxValue * Math.random());
        }
        return arr;
    }
    private static int[] copyArray(int[] arr) {
        if (arr == null)  return null;
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }
    private static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) 
            return false;
        if (arr1 == null && arr2 == null) 
            return true;
        if (arr1.length != arr2.length) 
            return false;
        for (int i = 0; i < arr1.length; i++)
            if (arr1[i] != arr2[i])
                return false;
        return true;
    }
    private static void printArray(int[] arr) {
        if (arr == null) 
            return;
        for (int i = 0; i < arr.length; i++) 
            System.out.print(arr[i] + " ");
        System.out.println();
    }
}



相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
21 1
|
2月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
2月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
58 2
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
63 4
|
2月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
4月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
272 1
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
下一篇
无影云桌面